Aspects of string phenomenology and scale hierarchies

I. Antoniadis
Albert Einstein Center, Bern University
and
LPTHE, UPMC/CNRS, Sorbonne Universités, Paris
Main predictions \(\rightarrow\) inspirations for BSM physics

- Spacetime supersymmetry \(\text{but arbitrary breaking scale}\)
- Extra dimensions of space \(\text{six or seven in M-theory}\)
- Brane-world description of our Universe
 - matter and gauge interactions may be localised in less dimensions
- Landscape of vacua
- \(\ldots\)
Connect string theory to the real world

- Is it a tool for strong coupling dynamics or a theory of fundamental forces?
- If theory of Nature can it describe both particle physics and cosmology?
Problem of scales

- describe high energy (SUSY?) extension of the Standard Model
- unification of all fundamental interactions
- incorporate Dark Energy
 - simplest case: infinitesimal (tuneable) +ve cosmological constant
- describe possible accelerated expanding phase of our universe
 - models of inflation (approximate de Sitter)

\[\Rightarrow 3 \text{ very different scales besides } M_{\text{Planck}}: \]

<table>
<thead>
<tr>
<th>DarkEnergy</th>
<th>ElectroWeak</th>
<th>Inflation</th>
<th>QuantumGravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>meV</td>
<td>TeV</td>
<td>(M_I)</td>
<td>(M_{\text{Planck}})</td>
</tr>
</tbody>
</table>
Problem of scales

1. they are independent
2. possible connections
 - M_I could be near the EW scale, such as in Higgs inflation
 but large non minimal coupling to explain
 - M_{Planck} could be emergent from the EW scale
 in models of low-scale gravity and TeV strings

What about M_I? can it be at the TeV scale?
Can we infer M_I from cosmological data?

I.A.-Patil ’14 and ’15

connect inflation and SUSY breaking scales
impose independent scales: proceed in 2 steps

1. SUSY breaking at $m_{SUSY} \sim \text{TeV}$
 with an infinitesimal (tuneable) positive cosmological constant
 Villadoro-Zwirner '05
 I.A.-Knoops, I.A.-Ghilencea-Knoops '14, I.A.-Knoops '15

2. Inflation connected or independent? [15] [23]
Toy model for SUSY breaking

Content (besides $N = 1$ SUGRA): one vector V and one chiral multiplet S

with a shift symmetry $S \rightarrow S - i c \omega \leftarrow$ transformation parameter

String theory: compactification modulus or universal dilaton

$$s = \frac{1}{g^2} + i a \leftarrow$$ dual to antisymmetric tensor

Kähler potential K: function of $S + \bar{S}$

$$K = -p \ln(S + \bar{S})$$

string theory: $K = -p \ln(S + \bar{S})$

Superpotential: constant or single exponential if R-symmetry $W = ae^{bS}$

$$\int d^2 \theta W \text{ invariant}$$

$b < 0 \Rightarrow$ non perturbative

can also be described by a generalized linear multiplet [11]
Scalar potential

\[V_F = a^2 e^{\frac{b}{l}} l^{-2} \left\{ \frac{1}{p} (pl - b)^2 - 3l^2 \right\} \quad l = 1/(s + \bar{s}) \]

Planck units

- \(b > 0 \) \(\Rightarrow \) SUSY local minimum in AdS space with \(l = b/p \)
- \(b \leq 0 \) \(\Rightarrow \) no minimum with \(l > 0 \) \((p \leq 3)\)
 - but interesting metastable SUSY breaking vacuum when R-symmetry is gauged by \(V \) allowing a Fayet-Iliopoulos (FI) term:
 \[V_D = c^2 l(pl - b)^2 \] for gauge kinetic function \(f(S) = S \)
- \(b > 0 \): \(V = V_F + V_D \) SUSY AdS minimum remains
- \(b = 0 \): SUSY breaking minimum in AdS \((p < 3)\)
- \(b < 0 \): SUSY breaking minimum with tuneable cosmological constant \(\Lambda \)
Minimisation of the potential: $V' = 0$, $V = \Lambda$

In the limit $\Lambda \approx 0$ ($\rho = 2$) \(\Rightarrow [17]\)

\[
b/l = \rho \approx -0.183268 \Rightarrow \langle l \rangle = b/\rho
\]

\[
\frac{a^2}{bc^2} = 2 \frac{e^{-\rho}}{\rho} \frac{(2-\rho)^2}{2+4\rho-\rho^2} + \mathcal{O}(\Lambda) \approx -50.6602 \Rightarrow c \propto a
\]

Physical spectrum:

massive dilaton, $U(1)$ gauge field, Majorana fermion, gravitino

All masses of order $m_{3/2} \approx e^{\rho/2} l a \leftarrow \text{TeV scale}$
\(V \) vs. \(s + s_{\text{bar}} \)

- \(c = 1 \)
- \(c = 0.7 \)

[15]
Properties and generalizations

- Metastability of the ground state: extremely long lived

\[l \approx 0.02 \text{ (GUT value } \alpha_{GUT}/2) \quad m_{3/2} \sim O(\text{TeV}) \Rightarrow \]

\[\text{decay rate } \Gamma \sim e^{-B} \text{ with } B \approx 10^{300} \]

- Add visible sector (MSSM) preserving the same vacuum matter fields \(\phi \) neutral under \(R \)-symmetry

\[K = -2 \ln(S + \bar{S}) + \phi^\dagger \phi \quad ; \quad W = (a + W_{\text{MSSM}})e^{bs} \]

\[\Rightarrow \text{soft scalar masses non-tachyonic of order } m_{3/2} \text{ (gravity mediation)} \]

- Toy model classically equivalent to \([7]\)

\[K = -p \ln(S + \bar{S}) + b(S + \bar{S}) \quad ; \quad W = a \quad \text{with } V \text{ ordinary } U(1) \]

- Dilaton shift can be identified with \(B - L \supset \text{matter parity } (-)^{B-L} \)
Properties and generalizations

- R-charged fields needed for anomaly cancellation
- A simple (anomaly free) variation: \(f = 1 \) and \(p = 1 \)
 - tuning still possible but scalar masses of neutral matter tachyonic
 - possible solution: add a new field \(Z \) in the ‘hidden’ SUSY sector
 \(\Rightarrow \) one extra parameter

- alternatively: add an \(S \)-dependent factor in Matter kinetic terms
 \[
 K = - \ln(S + \bar{S}) + (S + \bar{S})^{-\nu} \sum \Phi \bar{\Phi} \quad \text{for} \quad \nu \gtrsim 2.5
 \]
 \(\Rightarrow \) similar phenomenology

- distinct features from other models of SUSY breaking and mediation
- gaugino masses at the quantum level
 \(\Rightarrow \) suppressed compared to scalar masses and A-terms
The masses of sbottom squark (yellow), stop (black), gluino (red), lightest chargino (green) and lightest neutralino (blue) as a function of the gravitino mass. The mass of the lightest neutralino varies between ~ 40 and 150 GeV.
ATLAS SUSY Searches* - 95% CL Lower Limits

Status: August 2016

Preliminary

<table>
<thead>
<tr>
<th>Model</th>
<th>e, μ, τ, γ</th>
<th>Jets</th>
<th>E_{T}^{miss}</th>
<th>\sqrt{s} (TeV)</th>
<th>Mass limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive Searches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$q\bar{q}$, $g\bar{g}$ (Compressed)</td>
<td>0</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.85 TeV</td>
<td>1507.0525</td>
</tr>
<tr>
<td>$q\bar{q}$, $q\bar{g}$</td>
<td>0</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>13.3</td>
<td>608 GeV</td>
<td>ATLAS-CONF-2016-078</td>
</tr>
<tr>
<td>$q\bar{q}$, $q\bar{g}$ (SS)</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>13.3</td>
<td>1.35 TeV</td>
<td></td>
<td>1604.0773</td>
</tr>
<tr>
<td>$g\bar{g}$, $g\bar{g}$ (SS)</td>
<td>3 c, 4 jets</td>
<td>-</td>
<td>13.2</td>
<td>1.8 TeV</td>
<td></td>
<td>1604.0773</td>
</tr>
<tr>
<td>$g\bar{g}$, $g\bar{g}$ (WLX)</td>
<td>2, 3 jets</td>
<td>Yes</td>
<td>13.2</td>
<td>1.7 TeV</td>
<td></td>
<td>1507.05493</td>
</tr>
<tr>
<td>$g\bar{g}$, $g\bar{g}$ (WL)</td>
<td>1 + 0-1</td>
<td>0-2 jets</td>
<td>Yes</td>
<td>3.2</td>
<td>1.6 TeV</td>
<td>ATLAS-CONF-2016-066</td>
</tr>
<tr>
<td>GGM (binor NLSL)</td>
<td>2 c, 0 mono-jet</td>
<td>Yes</td>
<td>20.3</td>
<td>2.0 TeV</td>
<td></td>
<td>1503.0020</td>
</tr>
<tr>
<td>Gravino LSQ</td>
<td>0</td>
<td>mono-jet</td>
<td>Yes</td>
<td>20.3</td>
<td>1.8 x 10^{-1}, m($\tilde{\chi}^{\pm}$)/1.5 TeV</td>
<td></td>
</tr>
<tr>
<td>Direct production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tilde{b}{1}$, $\tilde{b}{2}$</td>
<td>0</td>
<td>2 b</td>
<td>Yes</td>
<td>3.2</td>
<td>1.89 TeV</td>
<td>ATLAS-CONF-2016-052</td>
</tr>
<tr>
<td>$\tilde{b}{1}$, $\tilde{b}{2}$</td>
<td>2 c, 0 mono-jet</td>
<td>Yes</td>
<td>20.3</td>
<td>1.89 TeV</td>
<td></td>
<td>ATLAS-CONF-2016-052</td>
</tr>
<tr>
<td>\tilde{g}, \tilde{g}, \tilde{h}</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>14.8</td>
<td>1.37 TeV</td>
<td></td>
</tr>
<tr>
<td>EW direct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tilde{t}{1}$, $\tilde{t}{2}$, $\tilde{b}{1}$, $\tilde{b}{2}$</td>
<td>2 c, 2 b</td>
<td>Yes</td>
<td>20.3</td>
<td>840 GeV</td>
<td></td>
<td>1604.0773</td>
</tr>
<tr>
<td>$\tilde{t}{1}$, $\tilde{t}{2}$, $\tilde{b}{1}$, $\tilde{b}{2}$</td>
<td>2 c, 0 mono-jet</td>
<td>Yes</td>
<td>20.3</td>
<td>325-685 GeV</td>
<td></td>
<td>1506.08616</td>
</tr>
<tr>
<td>$\tilde{t}{1}$, $\tilde{b}{1}$, $\tilde{b}{2}$, $\tilde{t}{2}$</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>13.3</td>
<td>200-720 GeV</td>
<td></td>
<td>1506.08616</td>
</tr>
<tr>
<td>\tilde{g}, \tilde{g}, \tilde{q}, \tilde{d}</td>
<td>0-1 c, 3 b</td>
<td>Yes</td>
<td>14.8</td>
<td>203-350 GeV</td>
<td></td>
<td>1506.08616</td>
</tr>
<tr>
<td>\tilde{g}, \tilde{g}, \tilde{d}, \tilde{q}</td>
<td>0-1 c, 3 b</td>
<td>Yes</td>
<td>20.1</td>
<td>320-620 GeV</td>
<td></td>
<td>1506.08616</td>
</tr>
<tr>
<td>Direct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tilde{t}{1}$, $\tilde{t}{2}$, $\tilde{b}{1}$, $\tilde{b}{2}$</td>
<td>Disapp.trk</td>
<td>1 jet</td>
<td>Yes</td>
<td>20.3</td>
<td>90-335 GeV</td>
<td></td>
</tr>
<tr>
<td>$\tilde{t}{1}$, $\tilde{t}{2}$, $\tilde{b}{1}$, $\tilde{b}{2}$</td>
<td>Disapp.trk</td>
<td>1 jet</td>
<td>Yes</td>
<td>20.3</td>
<td>640 GeV</td>
<td></td>
</tr>
<tr>
<td>Stable \tilde{g}, \tilde{b}-hadron</td>
<td>1-5 jets</td>
<td>Yes</td>
<td>27.9</td>
<td>580 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable \tilde{g}, \tilde{b}-hadron</td>
<td>1-5 jets</td>
<td>Yes</td>
<td>14.8</td>
<td>425 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preproduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\tilde{g}, \tilde{g}, \tilde{q}, \tilde{d}</td>
<td>2 c, 3 b</td>
<td>Yes</td>
<td>20.3</td>
<td>635 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\tilde{g}, \tilde{g}, \tilde{q}, \tilde{d}</td>
<td>2 c, 3 b</td>
<td>Yes</td>
<td>20.3</td>
<td>115-370 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preproduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\tilde{g}, \tilde{g}, \tilde{q}, \tilde{d}</td>
<td>1 jet</td>
<td>Yes</td>
<td>20.3</td>
<td>270 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\tilde{g}, \tilde{g}, \tilde{q}, \tilde{d}</td>
<td>1 jet</td>
<td>Yes</td>
<td>20.3</td>
<td>495 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable \tilde{b}-hadron</td>
<td>1 jet</td>
<td>Yes</td>
<td>27.9</td>
<td>850 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable \tilde{b}-hadron</td>
<td>1 jet</td>
<td>Yes</td>
<td>14.8</td>
<td>1.58 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-lived particles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\tilde{g}, \tilde{g}, \tilde{q}, \tilde{d}</td>
<td>1 jet</td>
<td>Yes</td>
<td>20.3</td>
<td>537 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\tilde{g}, \tilde{g}, \tilde{q}, \tilde{d}</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>20.3</td>
<td>440 GeV</td>
<td></td>
</tr>
<tr>
<td>\tilde{g}, \tilde{g}, \tilde{q}, \tilde{d}</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>20.3</td>
<td>1.0 TeV</td>
<td></td>
</tr>
<tr>
<td>GGM \tilde{g}, \tilde{g}, \tilde{q}, \tilde{d}</td>
<td>0-4 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.0 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\tilde{g}, \tilde{g}, \tilde{q}, \tilde{d}</td>
<td>0-4 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.0 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalar charm, \tilde{c}</td>
<td>0</td>
<td>2 c</td>
<td>Yes</td>
<td>20.3</td>
<td>510 GeV</td>
<td></td>
</tr>
</tbody>
</table>

Only a selection of the available mass limits on new states or phenomena is shown.

I. Antoniadis (HEP2017-Ioannina)
Can the dilaton be the inflaton in the simple model of SUSY breaking based on a gauged shift symmetry?

the only physical scalar left over, partner (partly) of the goldstino partly because of a D-term auxiliary component

Same potential cannot satisfy the slow roll condition $|\eta| = |V''/V| << 1$ with the dilaton rolling towards the Standard Model minimum

\Rightarrow need to create an appropriate plateau around the maximum of V \[10\]

without destroying the properties of the SM minimum

\Rightarrow study possible corrections to the Kähler potential

only possibility compatible with the gauged shift symmetry
Extensions of the SUSY breaking model

Parametrize the general \textit{correction} to the Kähler potential:

\[
K = -p\kappa^{-2} \log \left(s + \bar{s} + \frac{\xi}{b} F(s + \bar{s}) \right) + \kappa^{-2} b(s + \bar{s})
\]

\[
W = \kappa^{-3} a, \quad f(s) = \gamma + \beta s
\]

\[
\mathcal{P} = \kappa^{-2} c \left(b - p \frac{1 + \frac{\xi}{b} F'}{s + \bar{s} + \frac{\xi}{b} F} \right)
\]

Three types of possible corrections:

- \textbf{perturbative: } \(F \sim (s + \bar{s})^{-n}, \quad n \geq 0 \)
- \textbf{non-perturbative D-brane instantons: } \(F \sim e^{-\delta(s+\bar{s})}, \quad \delta > 0 \)
- \textbf{non-perturbative NS5-brane instantons: } \(F \sim e^{-\delta(s+\bar{s})^2}, \quad \delta > 0 \)

Only the last can lead to slow-roll conditions with sufficient inflation
Slow-roll inflation

\[F = \xi e^{\alpha b^2 \phi^2} \text{ with } \phi = s + \bar{s} = 1/l \Rightarrow \text{two extra parameters } \alpha < 0, \xi \]

they control the shape of the potential

slow-roll conditions: \(\epsilon = 1/2(V'/V)^2 \ll 1, |\eta| = |V''/V| \ll 1 \)

\Rightarrow \text{allowed regions of the parameter space with } |\xi| \text{ small}

additional independent parameters: \(a, c, b \)

SM minimum with tuneable cosmological constant \(\Lambda \): \(V' = 0, V = \Lambda \approx 0 \)

\[\xi = 0 \Rightarrow b\phi_{min} = \rho_0, \frac{a^2}{bc^2} = \lambda_0 \text{ with } \rho_0, \lambda_0 \text{ calculable constants} \]

\(b \) controls \(\phi_{min} \sim 1/g_s \) choose it of order 10

tuning determines \(a \) in terms of \(c \) overall scale of the potential

\[\xi \neq 0 \Rightarrow \rho_0, \lambda_0 \text{ become functions } l(\xi, \alpha), \lambda(\xi, \alpha) \]

numerical analysis \(\Rightarrow \) mild dependence
$\xi = 0.025$, $\alpha = -4.8$, $p = 2$, $b = -0.018$
inflation starts with an initial condition for $\phi = \phi_*$ near the maximum and ends when $|\eta| = 1$

\Rightarrow number of e-folds $N = \int_{\text{start}}^{\text{end}} \frac{V}{V'}$

Predictions for the power spectrum of perturbations in CMB:

amplitude of density perturbations $A_s = \frac{\kappa^4 V_*}{24\pi^2 \epsilon_*}$

spectral index $n_s = 1 + 2\eta_* - 6\epsilon_*$

tensor – to – scalar ratio $r = 16\epsilon_*$

Numerical analysis: fit Planck ’15 data and keep the SM minimum with an infinitesimal cosmological constant

\Rightarrow fine tuning of the parameters of the model
Fit Planck '15 data and predictions

$p = 2, \phi_* = 27.32, \xi = 0.025, \alpha = -4.8, b = -0.018, c = 0.61 \times 10^{-13}$

<table>
<thead>
<tr>
<th>N</th>
<th>n_s</th>
<th>r</th>
<th>A_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1075</td>
<td>0.965</td>
<td>3×10^{-23}</td>
<td>2.259×10^{-9}</td>
</tr>
</tbody>
</table>
\[
\alpha \approx -4.84112 \\
\xi \approx 0.02535 \\
b = -0.01820 \\
c = 0.61 \times 10^{-13}
\]
$p = 1$: similar analysis \Rightarrow

$\phi_\ast = 64.53, \xi = 0.30, \alpha = -0.78, b = -0.023, c = 10^{-13}$

<table>
<thead>
<tr>
<th>N</th>
<th>n_s</th>
<th>r</th>
<th>A_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>889</td>
<td>0.959</td>
<td>4×10^{-22}</td>
<td>2.205×10^{-9}</td>
</tr>
</tbody>
</table>

SM minimum: $\langle \phi \rangle \approx 21.53, \langle m_{3/2} \rangle = 18.36$ TeV, $\langle M_{A_\mu} \rangle = 36.18$ TeV

During inflation:

$H_\ast = \kappa \sqrt{V_\ast/3} = 5.09$ TeV, $m_{3/2}^* = 4.72$ TeV, $M_{A_\mu}^* = 6.78$ TeV

Low energy spectrum essentially the same with $\xi = 0$:

$m_0^2 = m_{3/2}^2 [-2 + C], \quad A_0 = m_{3/2} C, \quad B_0 = A_0 - m_{3/2}$

$C = 1.53$ vs at $\xi = 0$: $C_0 = 1.52, m_{3/2}^0 = 17.27$, although $\langle \phi \rangle_0 \approx 9.96$ [6] [28]
Non-linear supersymmetry \Rightarrow goldstino mode χ

Volkov-Akulov '73

Effective field theory of SUSY breaking at low energies

Analog of non-linear σ-model \Rightarrow constraint superfields

Rocek-Tseytlin '78, Lindstrom-Rocek '79, Komargodski-Seiberg '09

Goldstino: chiral superfield X_{NL} satisfying $X_{NL}^2 = 0$ \Rightarrow

$$X_{NL}(y) = \frac{\chi^2}{2F} + \sqrt{2}\theta \chi + \theta^2 F$$

$$y^\mu = x^\mu + i\theta \sigma^\mu \bar{\theta}$$

$$= F\Theta^2 \quad \Theta = \theta + \frac{\chi}{\sqrt{2}F}$$

$$\mathcal{L}_{NL} = \int d^4\theta X_{NL} \bar{X}_{NL} - \frac{1}{\sqrt{2}\kappa} \left\{ \int d^2\theta X_{NL} + h.c. \right\} = \mathcal{L}_{Volkov-Akulov}$$

$$F = \frac{1}{\sqrt{2}\kappa} + \ldots$$
Non-linear SUSY in supergravity

\[K = -3 \log(1 - X \bar{X}) \equiv 3X \bar{X} \quad ; \quad W = f X + W_0 \]

\[X \equiv X_{NL} \]

\[\Rightarrow \quad V = \frac{1}{3} |f|^2 - 3 |W_0|^2 \quad ; \quad m_{3/2}^2 = |W_0|^2 \]

- \(V \) can have any sign contrary to global NL SUSY
- NL SUSY in flat space \(\Rightarrow f = 3 \frac{m_{3/2}}{M_p} \)
- \(R \)-symmetry is broken by \(W_0 \)
- Dual gravitational formulation: \((\mathcal{R} - 6W_0)^2 = 0 \)

I.A.-Markou '15

chiral curvature superfield

- Minimal SUSY extension of \(R^2 \) gravity
Starobinsky model of inflation

\[\mathcal{L} = \frac{1}{2} R + \alpha R^2 \]

Lagrange multiplier \(\phi \) \(\Rightarrow \) \(\mathcal{L} = \frac{1}{2} (1 + 2\phi) R - \frac{1}{4\alpha} \phi^2 \)

Weyl rescaling \(\Rightarrow \) equivalent to a scalar field with exponential potential:

\[\mathcal{L} = \frac{1}{2} R - \frac{1}{2} (\partial \phi)^2 - \frac{M^2}{12} \left(1 - e^{-\sqrt{\frac{2}{3}} \phi} \right)^2 \]

\[M^2 = \frac{3}{4\alpha} \]

Note that the two metrics are not the same

supersymmetric extension:

add D-term \(\mathcal{R} \mathcal{\bar{R}} \) because F-term \(\mathcal{R}^2 \) does not contain \(R^2 \)

\(\Rightarrow \) brings two chiral multiplets
SUSY extension of Starobinsky model

\[K = -3 \ln(T + \bar{T} - C\bar{C}) \quad ; \quad W = MC(T - \frac{1}{2}) \]

- \(T \) contains the inflaton: \(\text{Re} \ T = e^{\sqrt{\frac{2}{3}}\phi} \)
- \(C \sim R \) is unstable during inflation
 \(\Rightarrow \) add higher order terms to stabilize it
 e.g. \(C\bar{C} \rightarrow h(C, \bar{C}) = C\bar{C} - \zeta(C\bar{C})^2 \quad \text{Kallosh-Linde '13} \)

- SUSY is broken during inflation with \(C \) the goldstino superfield
 \(\rightarrow \) model independent treatment in the decoupling sgoldstino limit
 \(\Rightarrow \) minimal SUSY extension that evades stability problem
Non-linear Starobinsky supergravity

\[K = -3 \ln (T + \tilde{T} - X \tilde{X}) \; ; \; \; \; W = MXT + f X + W_0 \Rightarrow \]

\[\mathcal{L} = \frac{1}{2} R - \frac{1}{2} (\partial \phi)^2 - \frac{M^2}{12} \left(1 - e^{-\sqrt{\frac{2}{3}} \phi} \right)^2 - \frac{1}{2} e^{-2\sqrt{\frac{2}{3}} \phi} (\partial a)^2 - \frac{M^2}{18} e^{-2\sqrt{\frac{2}{3}} \phi} a^2 \]

- axion a much heavier than \(\phi \) during inflation, decouples:

\[m_\phi = \frac{M}{3} e^{-\sqrt{\frac{2}{3}} \phi_0} \ll m_a = \frac{M}{3} \]

- inflation scale \(M \) independent from NL-SUSY breaking scale \(f \)

\(\Rightarrow \) compatible with low energy SUSY

- however inflaton different from goldstino superpartner

- also initial conditions require trans-planckian values for \(\phi \) (\(\phi > 1 \))
Conclusions

String phenomenology:
Consistent framework for particle physics and cosmology

Challenge of scales: at least three very different (besides M_{Planck})
electroweak, dark energy, inflation, SUSY?

their origins may be connected or independent

SUSY with infinitesimal (tuneable) +ve cosmological constant

- interesting framework for model building incorporating dark energy
- identify inflaton with goldstino superpartner
 inflation at the SUSY breaking scale (TeV?)