Gravitational Waves & Leptogenesis From Higgs Inflation in Supergravity

C. Pallis

DEPARTMENT OF PHYSICS
UNIVERSITY OF CYPRUS

Based on:

Outline

Variants of Non-Minimal Higgs Inflation (non-MHI)

From Pure to Kinetically Modified non-Minimal Higgs Inflation
Inflation Analysis

The SUGRA Embedding

The (Semi)Logarithmic Kähler Potential
Softly Broken Shift Symmetry For Higgs Fields

Building A B – L GUT

Beyond MSSM With Several Consequences
The Inflationary Scenario

Post-Inflationary Evolution

Inflaton Decay & non-Thermal Leptogenesis
Conclusions

HEP2017: Recent Developments in High Energy Physics and Cosmology
6-9 April 2017, Ioannina, Greece
The General Framework

- Our starting point is the action in the Jordan Frame (JF) of a Higgs field ϕ non-minimally coupled to the Ricci Scalar curvature, \mathcal{R}, through a frame function $f_R(\phi)$. This is:

$$S = \int d^4 x \sqrt{-g} \left(-\frac{1}{2} f_R(\phi) \mathcal{R} + \frac{f_K(\phi)}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V_{HI}(\phi) \right), \quad \text{where} \quad V_{HI} = \lambda^2 (\phi^2 - M^2)^2 / 16$$

is the potential of ϕ. Also g is the determinant of the background metric and we allow for a kinetic mixing through the function $f_K(\phi)$.

- At the vacuum, $\phi = M \ll 1$ so that $f_R(\langle \phi \rangle) \simeq 1$ (in reduced Planck units with $m_P = 1$) to guarantee the ordinary Einstein Gravity at low energy.

The General Framework

- **Our Starting Point is The Action in the Jordan Frame (JF) Of A Higgs Field φ non-Minimally Coupled to the Ricci Scalar Curvature, R, Through A Frame Function f_R(φ). This is:**
 \[
 S = \int d^4x \sqrt{-g} \left(-\frac{1}{2} f_R(\phi)R + \frac{f_K(\phi)}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V_{HI}(\phi) \right), \text{ WHERE } V_{HI} = \frac{\lambda^2 (\phi^2 - M^2)^2}{16}
 \]
 is the Potential of φ. Also g is the Determinant Of The Background Metric and We Allow for a Kinetic Mixing Through the Function f_K(φ).

- **At the vacuum, φ = M ≪ 1 so that f_R(⟨φ⟩) ≈ 1 (in Reduced Planck Units With m_P = 1) to Guarantee the Ordinary Einstein Gravity At Low Energy**

- **We can Write S in the Einstein Frame (EF) as follows**
 \[
 S = \int d^4x \sqrt{-\tilde{g}} \left(\frac{1}{2} \tilde{R} + \frac{1}{2} \tilde{g}^{\mu\nu} \partial_\mu \tilde{\phi} \partial_\nu \tilde{\phi} - \tilde{V}_{HI}(\tilde{\phi}) \right)
 \]

- **Performing a Conformal Transformation** according which we define the EF Metric \(\tilde{g}_{\mu\nu} \) and Introduce the EF Canonically Normalized Field, \(\tilde{\phi} \), and Potential, \(\tilde{V} \), Defined As Follows:
 \[
 \tilde{g}_{\mu\nu} = f_R g_{\mu\nu}, \quad \left(\frac{d\tilde{\phi}}{d\phi} \right)^2 = f_R, \quad \frac{f_K}{f_R} + \frac{3}{2} \left(\frac{f_{R,\phi}}{f_R} \right)^2 \text{ AND } \tilde{V}_{HI}(\tilde{\phi}) = \frac{V_{HI}(\phi)}{f_R(\phi)^2}.
 \]

The General Framework

Our starting point is the action in the Jordan Frame (JF) of a Higgs field ϕ non-minimally coupled to the Ricci scalar curvature, \mathcal{R}, through a frame function $f_R(\phi)$. This is:

$$S = \int d^4 x \sqrt{-g} \left(-\frac{1}{2} f_R(\phi) \mathcal{R} + \frac{f_K(\phi)}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V_{HI}(\phi) \right), \quad \text{where} \quad V_{HI} = \lambda^2 (\phi^2 - M^2)^2 / 16$$

is the potential of ϕ. Also g is the determinant of the background metric and we allow for a kinetic mixing through the function $f_K(\phi)$.

- At the vacuum, $\phi = M \ll 1$ so that $f_R(\langle \phi \rangle) \simeq 1$ (in reduced Planck units with $m_P = 1$) to guarantee the ordinary Einstein gravity at low energy.

- We can write S in the Einstein Frame (EF) as follows:

$$S = \int d^4 x \sqrt{-\tilde{g}} \left(-\frac{1}{2} \tilde{\mathcal{R}} + \frac{1}{2} \tilde{g}^{\mu\nu} \partial_\mu \tilde{\phi} \partial_\nu \tilde{\phi} - \tilde{V}_{HI}(\tilde{\phi}) \right)$$

Performing a conformal transformation\(^1\) according which we define the EF metric $\tilde{g}_{\mu\nu}$ and introduce the EF canonically normalized field, $\tilde{\phi}$, and potential, \tilde{V}, defined as follows:

$$\tilde{g}_{\mu\nu} = f_R g_{\mu\nu}, \quad \left(\frac{d\tilde{\phi}}{d\phi} \right)^2 = f^2 = \frac{f_K}{f_R} + \frac{3}{2} \left(\frac{f_{R,\phi}}{f_R} \right)^2 \quad \text{and} \quad \tilde{V}_{HI}(\tilde{\phi}) = \frac{V_{HI}(\tilde{\phi}(\phi))}{f_R(\tilde{\phi}(\phi))^2}.$$

- We observe that f_R affects both J and \tilde{V}_{HI}. On the other hand, f_K influences exclusively J.

- J (and so f_K) has an impact on the inflationary observables.

- The analysis of non-MHI in the EF using the standard slow-roll approximation is equivalent with the analysis in JF.

Observational Requirements

- The **number of e-foldings**, \(\tilde{N}_* \), that the scale \(k_* = 0.05/\text{Mpc} \) suffers during non-MHI has to be sufficient to resolve the horizon and flatness problems of standard Big Bang:

\[
\tilde{N}_* = \int_{\phi_f}^{\phi_*} d\phi \frac{\tilde{V}_{\text{HI}}}{\tilde{V}_{\text{HI},\phi}} = \int_{\phi_f}^{\phi_*} d\phi J^2 \frac{\tilde{V}_{\text{HI}}}{\tilde{V}_{\text{HI},\phi}} \simeq 61.3 + \ln \frac{\tilde{V}_{\text{HI}}(\phi_*)^{1/2}}{\tilde{V}_{\text{HI}}(\phi_f)^{1/4}} + \frac{1}{2} \ln f_R(\phi_*)
\]

Where \(\phi_* [\tilde{\phi}_*] \) is the value of \(\phi [\tilde{\phi}] \) when \(k_* \) crosses outside the inflationary horizon;

\(\phi_f [\tilde{\phi}_f] \) is the value of \(\phi [\tilde{\phi}] \) at the end of non-MHI which can be found from the condition:

\[
\max\{\tilde{\epsilon}(\phi_f), \tilde{\eta}(\phi_f)\} = 1, \quad \text{with} \quad \tilde{\epsilon} = \frac{1}{2} \left(\frac{\tilde{V}_{\text{HI},\phi}}{\tilde{V}_{\text{HI}}} \right)^2 = \frac{1}{2J^2} \left(\frac{\tilde{V}_{\text{HI},\phi}}{\tilde{V}_{\text{HI}}} \right)^2 \quad \text{AND} \quad \tilde{\eta} = \frac{\tilde{V}_{\text{HI},\phi\phi}}{\tilde{V}_{\text{HI}}} = \frac{1}{J^2} \left(\frac{\tilde{V}_{\text{HI},\phi\phi}}{\tilde{V}_{\text{HI}}} - \frac{\tilde{V}_{\text{HI},\phi}}{\tilde{V}_{\text{HI}}} \frac{\tilde{V}_{\text{HI},\phi}}{\tilde{V}_{\text{HI}}} J_{\phi\phi} \right).
\]

\[\text{Planck Collaboration (2015); Bicep2/Keck Array and Planck Collaborations (2015)}\]
Observational Requirements

- **The Number of e-foldings**, \(\tilde{N}_* \), that the scale \(k_* = 0.05/\text{Mpc} \) suffers during non-MHI has to be sufficient to resolve the horizon and flatness problems of standard Big Bang:
 \[
 \tilde{N}_* = \int_{\phi_f}^{\phi_*} d\phi \frac{\tilde{V}_{HI}}{\tilde{V}_{HI,\phi}} = \int_{\phi_f}^{\phi_*} d\phi J^2 \frac{\tilde{V}_{HI}}{\tilde{V}_{HI,\phi}} \approx 61.3 + \ln \frac{\tilde{V}_{HI}(\phi_*)^{1/2}}{\tilde{V}_{HI}(\phi_f)^{1/4}} + \frac{1}{2} \ln f_R(\phi_*)
 \]

 Where \(\phi_* [\tilde{\phi}_*] \) is the value of \(\phi [\tilde{\phi}] \) when \(k_* \) crosses outside the inflationary horizon;
 \(\phi_f [\tilde{\phi}_f] \) is the value of \(\phi [\tilde{\phi}] \) at the end of non-MHI which can be found from the condition:

 \[
 \max[\tilde{\epsilon}(\phi_f), \tilde{\eta}(\phi_f)] = 1, \quad \tilde{\epsilon} = \frac{1}{2} \left(\frac{\tilde{V}_{HI,\phi}}{\tilde{V}_{HI}} \right)^2 = \frac{1}{2} J^2 \left(\frac{\tilde{V}_{HI,\phi}}{\tilde{V}_{HI}} \right)^2 \quad \text{AND} \quad \tilde{\eta} = \frac{\tilde{V}_{HI,\phi}}{\tilde{V}_{HI}} = \frac{1}{J^2} \left(\frac{\tilde{V}_{HI,\phi}}{\tilde{V}_{HI}} - \frac{\tilde{V}_{HI,\phi}}{\tilde{V}_{HI}} J, \phi \right).
 \]

- **The Amplitude** \(A_s \) **of the Power Spectrum** of the curvature perturbations is to be consistent with Planck data:
 \[
 A_s^{1/2} = \frac{1}{2 \sqrt{3} \pi} \frac{\tilde{V}_{HI}(\tilde{\phi}_*)^{3/2}}{|\tilde{V}_{HI,\phi}(\tilde{\phi}_*)|} = \frac{|J(\phi_*)|}{2 \sqrt{3} \pi} \frac{\tilde{V}_{HI}(\tilde{\phi}_*)^{3/2}}{|\tilde{V}_{HI,\phi}(\tilde{\phi}_*)|} = 4.627 \times 10^{-5}
 \]

\(^2\)Planck Collaboration (2015); Bicep2/Keck Array and Planck Collaborations (2015)
The **Number of e-foldings**, \hat{N}_\star, that the Scale $k_\star = 0.05$/Mpc Suffers During non-MHI has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$\hat{N}_\star = \int_{\phi_f}^{\phi_\star} d\phi \frac{\hat{V}_{\text{HI}}(\phi)}{\hat{V}_{\text{HI},\phi}} = \int_{\phi_f}^{\phi_\star} d\phi J^2 \frac{\hat{V}_{\text{HI}}(\phi)}{\hat{V}_{\text{HI},\phi}} \approx 61.3 + \ln \frac{\hat{V}_{\text{HI}}(\phi_\star)}{\hat{V}_{\text{HI}}(\phi_f)}^{1/4} + \frac{1}{2} \ln f_R(\phi_\star)$$

Where $\phi_\star [\hat{\phi}_\star]$ is the Value of $\phi [\hat{\phi}]$ When k_\star Crosses Outside The Inflationary Horizon; $\phi_f [\hat{\phi}_f]$ is the Value of $\phi [\hat{\phi}]$ at the end of non-MHI Which Can Be Found From The Condition:

$$\max[\hat{\epsilon}(\phi_f), \eta(\phi_f)] = 1, \quad \text{With} \quad \hat{\epsilon} = \frac{1}{2} \left(\frac{\hat{V}_{\text{HI},\phi}}{\hat{V}_{\text{HI}}} \right)^2 = \frac{1}{2J^2} \left(\frac{\hat{V}_{\text{HI},\phi}}{\hat{V}_{\text{HI}}} \right)^2 \quad \text{AND} \quad \hat{\eta} = \frac{\hat{V}_{\text{HI},\phi\phi}}{\hat{V}_{\text{HI}}} = \frac{1}{J^2} \left(\frac{\hat{V}_{\text{HI},\phi\phi}}{\hat{V}_{\text{HI}}} - \frac{\hat{V}_{\text{HI},\phi}}{\hat{V}_{\text{HI}}} \frac{\hat{J}_\phi}{J} \right).$$

- **The Amplitude** A_S of the Power Spectrum of the Curvature Perturbations is To Be Consistent with *Planck* Data:

$$A_S^{1/2} = \frac{1}{2 \sqrt{3} \pi} \frac{\hat{V}_{\text{HI}}(\hat{\phi}_\star)^{3/2}}{|\hat{V}_{\text{HI},\phi}(\hat{\phi}_\star)|} = \frac{|J(\phi_\star)|}{2 \sqrt{3} \pi} \frac{\hat{V}_{\text{HI}}(\hat{\phi}_\star)^{3/2}}{|\hat{V}_{\text{HI},\phi}(\phi_\star)|} = 4.627 \cdot 10^{-5}$$

- **The (Scalar) Spectral Index**, n_s, Its Running, α_s, And The Tensor-To-Scalar Ratio r are to be Consistent With the Fitting of the *Planck* Results by the ΛCDM Model (at 95% c.l.):

$$n_s = 1 - 6\hat{\epsilon}_\star + 2\hat{\eta}_\star = 0.968 \pm 0.0045, \quad |\alpha_s| = |2 \left(4\hat{\eta}_\star - (n_s - 1)^2 \right) / 3 - 2\hat{\epsilon}_\star | \ll 0.001 \quad \text{AND} \quad r = 16\hat{\epsilon}_\star < 0.07,$$

Where $\hat{\xi} = \hat{\nu}_{\text{HI},\phi} \hat{V}_{\text{HI},\phi\phi\phi}/\hat{V}_{\text{HI}}^2 = \hat{V}_{\text{HI},\phi} \hat{\eta}, /\hat{V}_{\text{HI}} J^2 + 2\hat{\epsilon}_\star$ And The Variables With Subscript \star Are Evaluated at $\phi = \phi_\star$.

2Planck Collaboration (2015); Bicep2/Keck Array and Planck Collaborations (2015)
Observational Requirements

- **The Number of e-foldings**, \(\tilde{N}_* \), that the Scale \(k_* = 0.05/\text{Mpc} \) Suffers During non-MHI has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

\[
\tilde{N}_* = \int_{\phi_f}^{\phi_*} d\phi \frac{V_{\text{HI}}}{V_{\text{HI},\phi}} = \int_{\phi_f}^{\phi_*} d\phi \frac{1}{2} J^2 \left(\frac{V_{\text{HI},\phi}}{V_{\text{HI}}} \right)^2 \approx 61.3 + \ln \frac{V_{\text{HI}}(\phi_*)^{1/2}}{V_{\text{HI}}(\phi_f)^{1/4}} + \frac{1}{2} \ln f_R(\phi_*)
\]

Where \(\phi_* [\tilde{\phi}_*] \) is The Value of \(\phi [\tilde{\phi}] \) When \(k_* \) Crosses Outside The Inflationary Horizon;

\(\phi_f [\tilde{\phi}_f] \) is the Value of \(\phi [\tilde{\phi}] \) at the end of non-MHI Which Can Be Found From The Condition:

\[
\max[\epsilon(\phi_f), \eta(\phi_f)] = 1, \quad \text{With} \quad \epsilon = \frac{1}{2} \left(\frac{V_{\text{HI},\phi}}{V_{\text{HI}}} \right)^2 = \frac{1}{2} J^2 \left(\frac{V_{\text{HI},\phi}}{V_{\text{HI}}} \right)^2 \quad \text{AND} \quad \eta = \frac{V_{\text{HI},\phi}}{V_{\text{HI}}} = \frac{1}{J^2} \left(\frac{V_{\text{HI},\phi}}{V_{\text{HI}}} - \frac{V_{\text{HI},\phi}}{J} \right).
\]

- **The Amplitude** \(A_s \) of the Power Spectrum of the Curvature Perturbations is To Be Consistent with Planck Data:

\[
A_s^{1/2} = \frac{1}{2 \sqrt{3} \pi} \left(\frac{V_{\text{HI}}(\phi_*)^{3/2}}{V_{\text{HI},\phi}(\phi_*)} \right) = \frac{|J(\phi_*)|}{2 \sqrt{3} \pi} \left(\frac{V_{\text{HI}}(\phi_*)^{3/2}}{V_{\text{HI},\phi}(\phi_*)} \right) = 4.627 \cdot 10^{-5}
\]

- The (Scalar) Spectral Index, \(n_s \), Its Running, \(\alpha_s \), and The Tensor-To-Scalar Ratio \(r \) are to be Consistent With the Fitting of the Planck Results by the \(\Lambda \)CDM Model (at 95% c.l.):

\[
n_s = 1 - 6\epsilon_* + 2\tilde{\eta}_* = 0.968 \pm 0.0045, \quad |\alpha_s| = |2(4\tilde{\epsilon}_*^2 - (n_s - 1)^2)/3 - 2\tilde{\xi}_*| \ll 0.001 \quad \text{AND} \quad r = 16\tilde{\epsilon}_* < 0.07,
\]

Where \(\tilde{\xi} = \frac{V_{\text{HI},\phi} V_{\text{HI}}}{V_{\text{HI}}} \), \(\tilde{\eta}_* = \frac{V_{\text{HI},\phi}}{V_{\text{HI}}} \), \(\tilde{\xi}_* = \frac{V_{\text{HI},\phi} V_{\text{HI}}}{V_{\text{HI}}} \), \(J = 2 + 2\tilde{\epsilon} \) AND The Variables With Subscript \(* \) Are Evaluated at \(\phi = \phi_* \).

- The Combined Bicep2/Keck Array and Planck Results\(^2\) Although Do Not Exclude Inflationary Models With Negligible \(r \)'s, They Seem to Favor Those With \(r \)'s of Order 0.01 Since \(r = 0.028^{+0.026}_{-0.025} \Rightarrow 0.003 \lesssim r \lesssim 0.054 \) at 68% c.l.

\(^2\)Planck Collaboration (2015); Bicep2/Keck Array and Planck Collaborations (2015)
The Two Regimes of Pure non-MHI

- non-MHI has been originally formulated as follows:

\[V_{\text{HI}} = \lambda \phi^4 / 4, \quad \text{with} \quad f_R = 1 + c_R \phi^2 \quad \text{and} \quad f_K = 1. \]
Variants of Non-Minimal Higgs Inflation (non-MHI)

From Pure to Kinetically Modified non-Minimal Higgs Inflation

The Two Regimes of Pure non-MHI

- non-MHI has been originally formulated as follows:

\[V_{\text{HI}} = \lambda \phi^4 / 4, \text{ with } f_R = 1 + c_R \phi^2 \text{ and } f_K = 1. \]

- The resulting model exhibits the following Two Regimes:

 - The Weak \(c_R \) Regime, with \(c_R \ll 1 \) or \(\phi > 1 \) and \(c_R \)-dependent observables converging towards their values in MHI, i.e., \(n_s \approx 1 - 3 \tilde{N}_* = 0.947 \) and \(r \approx 4n/\tilde{N}_* \approx 0.28 \) for \(n = 4 \) respectively (\(\tilde{N}_* = 60 \)).

 - The Strong \(c_R \) Regime, with \(c_R \gg 1 \) and \(\phi < 1 \) and \(c_R \)-independent observables:

\[n_s \approx 1 - 2/\tilde{N}_* = 0.965 \text{ and } r \approx 12/\tilde{N}_*^2 = 0.0036. \]
The Two Regimes of Pure non-MHI

- **non-MHI Has Been Originally Formulated As Follows:**
 \[V_{HI} = \lambda \phi^4 / 4, \quad \text{With} \quad f_R = 1 + c_R \phi^2 \quad \text{and} \quad f_K = 1. \]

- **The Resulting Model Exhibits The Following Two Regimes:**
 - **The Weak \(c_R \) Regime**, with \(c_R \ll 1 \) or \(\phi > 1 \) and \(c_R \)-Dependent Observables Converging Towards Their Values In MHI, i.e., \(n_s \approx 1 - 3\tilde{N}_* = 0.947 \) and \(r \approx 4n/\tilde{N}_* \approx 0.28 \) for \(n = 4 \) Respectively (\(\tilde{N}_* = 60 \)).
 - **The Strong \(c_R \) Regime**, with \(c_R \gg 1 \) and \(\phi < 1 \) and \(c_R \)-Independent Observables:
 \[n_s \approx 1 - 2/\tilde{N}_* = 0.965 \quad \text{and} \quad r \approx 12/\tilde{N}_*^2 = 0.0036. \]

- **In the Latter, Very Predictive Regime**, The Model Faces Problems With **Perturbative Unitarity**.
From Pure to Kinetically Modified non-Minimal Higgs Inflation

The Ultraviolet (UV) Cut-off Scale (Λ_{UV})

- In particular, the validity of the Effective Theory implies:

$$ (a) \quad \tilde{V}_{HI}(\phi_*)^{1/4} \leq \Lambda_{UV} \quad \text{for} \quad (b) \quad \phi \leq \Lambda_{UV} $$

Where Λ_{UV} is the Ultraviolet Cut-off of the Effective Theory and $\tilde{V}_{HI}(\phi_*)^{1/4}$ is the Inflationary Scale.

- To find Λ_{UV}, we analyze the Small-Field Behavior of the Theory expanding S about $\langle \phi \rangle \approx 0$ in terms of ϕ. We have

$$ J^2 = \left(\frac{d\phi}{d\phi} \right)^2 = \frac{f_K}{f_R} + \frac{6c_R^2 \phi^2}{f_R^2} \quad \Rightarrow \quad \langle J \rangle = 1 \quad \text{for} \quad \langle f_K \rangle = 1, \text{i.e.,} \quad \phi = \phi \quad \text{At the Vacuum of the Theory} $$

From Pure to Kinetically Modified non-Minimal Higgs Inflation

The Ultraviolet (UV) Cut-off Scale (Λ_{UV})

- In particular, the validity of the effective theory implies:

 $$(a) \quad \bar{V}_{HI}(\phi_*)^{1/4} \leq \Lambda_{UV} \quad \text{for} \quad (b) \quad \phi \leq \Lambda_{UV}$$

 Where Λ_{UV} is the Ultraviolet Cut-off of the effective theory and $\bar{V}_{HI}(\phi_*)^{1/4}$ is the inflationary scale.

- To find Λ_{UV}, we analyze the small-field behavior of the theory expanding S about $\langle \phi \rangle \approx 0$ in terms of $\hat{\phi}$. We have

 $$J^2 = \left(\frac{d\hat{\phi}}{d\phi} \right)^2 = \frac{f_K}{f_R} + \frac{6c_R^2\phi^2}{f_R^2} \implies \langle J \rangle = 1 \quad \text{for} \quad \langle f_K \rangle = 1, \text{i.e.,} \quad \hat{\phi} = \phi \text{ at the vacuum of the theory}$$

- For any c_R we obtain $\Lambda_{UV} = m_P/c_R$ since the expansions about $\langle \phi \rangle = 0$ are c_R dependent:

 $$J^2 \phi^2 = (1 - c_R\phi^2 + 6c_R^2\phi^4 + \cdots)\phi^2 \quad \text{and} \quad \bar{V}_{HI} = \frac{\lambda^2\phi^4}{2} \left(1 - 2c_R\phi^2 + 3c_R^2\phi^4 - 4c_R^3\phi^6 + \cdots \right)$$

 Since the term which yields the smallest denominator for $c_R > 1$ is $6c_R^2\phi^2$ we find $\Lambda_{UV} = m_P/c_R \ll m_P$.

THE ULTRAVIOLET (UV) CUT-OFF SCALE (Λ_{UV})

- In particular, the validity of the effective theory implies:
 \[
 \begin{align*}
 (a) & \quad \tilde{V}_{HI}(\phi_*)^{1/4} \leq \Lambda_{UV} \quad \text{for (b) } \phi \leq \Lambda_{UV}
 \end{align*}
 \]

Where Λ_{UV} is the ultraviolet cut-off of the effective theory and $\tilde{V}_{HI}(\phi_*)^{1/4}$ is the inflationary scale.

- To find Λ_{UV}, we analyze the small-field behavior of the theory expanding S about $\langle \phi \rangle = 0$ in terms of ϕ. We have
 \[
 J^2 = \left(\frac{d\phi}{d\phi} \right)^2 = \frac{f_K}{f_R} + \frac{6c_R^2\phi^2}{f_R^2} \quad \Rightarrow \quad \langle J \rangle = 1 \quad \text{for} \quad \langle f_K \rangle = 1, \text{i.e.,} \quad \phi = \phi \quad \text{at the vacuum of the theory}
 \]

- For any c_R we obtain $\Lambda_{UV} = m_p/c_R$ since the expansions about $\langle \phi \rangle = 0$ are c_R dependent:
 \[
 J^2 \phi^2 = \left(1 - c_R\phi^2 + 6c_R^2\phi^2 + c_R^2\phi^4 + \cdots \right) \phi^2 \quad \text{and} \quad \tilde{V}_{HI} = \frac{\lambda^2\phi^4}{2} \left(1 - 2c_R\phi^2 + 3c_R^2\phi^4 - 4c_R^3\phi^6 + \cdots \right).
 \]

Since the term which yields the smallest denominator for $c_R > 1$ is $6c_R^2\phi^2$ we find $\Lambda_{UV} = m_p/c_R \ll m_p$.

- If we introduce a non-canonical kinetic mixing such that
 \[
 \langle f_K \rangle = c_K \quad \text{and} \quad c_R = r_{RK}c_K
 \]

The expansions above are rewritten in terms of the new parameter r_{RK}
 \[
 J^2 \phi^2 = \left(1 - r_{RK}\phi^2 + 6r_{RK}^2\phi^2 + r_{RK}^2\phi^4 + \cdots \right) \phi^2 \quad \text{and} \quad \tilde{V}_{HI} = \frac{\lambda^2\phi^4}{2c_K^2} \left(1 - 2r_{RK}\phi^2 + 3r_{RK}^2\phi^4 - 4r_{RK}^3\phi^6 + \cdots \right).
 \]

Consequently, no problem with the perturbative unitarity emerges for $r_{RK} \leq 1$, even if c_R and c_K are large.

From Pure to Kinetically Modified non-Minimal Higgs Inflation

The Ultraviolet (UV) Cut-off Scale (Λ_{UV})

- In particular, the validity of the effective theory implies:

 \[(a) \quad \tilde{V}_{\text{HI}}(\phi_*)^{1/4} \leq \Lambda_{\text{UV}} \quad \text{for} \quad (b) \quad \phi \leq \Lambda_{\text{UV}} \]

Where Λ_{UV} is the ultraviolet cut-off of the effective theory and $\tilde{V}_{\text{HI}}(\phi_*)^{1/4}$ is the inflationary scale.

- To find Λ_{UV}, we analyze the small-field behavior of the theory expanding S about $\langle \phi \rangle \approx 0$ in terms of $\tilde{\phi}$. We have

 \[J^2 = \left(\frac{d\tilde{\phi}}{d\phi} \right)^2 = \frac{f_K}{f_R} + \frac{6c_R^2\phi^2}{f_R^2} \quad \Rightarrow \quad \langle J \rangle = 1 \quad \text{for} \quad \langle f_K \rangle = 1, \text{i.e.,} \quad \tilde{\phi} = \phi \text{ at the vacuum of the theory} \]

- For any c_R we obtain $\Lambda_{\text{UV}} = m_P/c_R$ since the expansions about $\langle \phi \rangle = 0$ are c_R dependent:

 \[J^2 \phi^2 = \left(1 - c_R\phi^2 + 6c_R^2\phi^2 + c_R^2\phi^4 + \cdots \right) \phi^2 \quad \text{and} \quad \tilde{V}_{\text{HI}} = \frac{\lambda^2\phi^4}{2} \left(1 - 2c_R\phi^2 + 3c_R^2\phi^4 - 4c_R^3\phi^6 + \cdots \right). \]

Since the term which yields the smallest denominator for $c_R > 1$ is $6c_R^2\phi^2$ we find $\Lambda_{\text{UV}} = m_P/c_R \ll m_P$.

- If we introduce a non-canonical kinetic mixing such that

 \[\langle f_K \rangle = c_K \quad \text{and} \quad c_R = r_{RK}c_K \]

the expansions above are rewritten in terms of the new parameter r_{RK}.

 \[J^2 \phi^2 = \left(1 - r_{RK}\phi^2 + 6r_{RK}^2\phi^2 + r_{RK}^2\phi^4 + \cdots \right) \phi^2 \quad \text{and} \quad \tilde{V}_{\text{HI}} = \frac{\lambda^2\phi^4}{2c_K^2} \left(1 - 2r_{RK}\phi^2 + 3r_{RK}^2\phi^4 - 4r_{RK}^3\phi^6 + \cdots \right). \]

Consequently, no problem with the perturbative unitarity emerges for $r_{RK} \leq 1$, even if c_R and c_K are large.

We propose to analyze models of kinetically modified non-MHI with $f_K = c_Kf_R^m$ where $c_K = (c_R/r_{RK})$ & $r_{RK} \leq 1$

(Note that $\langle f_K \rangle = c_K$ & $\langle f_R \rangle = 1$ and the extra functional uncertainty in f_K is parameterized by f_R^m)

Analytical Results

- **Kinetically Modified** non-MHI is defined in the JF with the following ingredients

\[V_{HI} = \lambda^2 (\phi^2 - M^2)^2 / 16, \quad \text{with} \quad f_R = 1 + c_R \phi^2 \quad \text{and} \quad f_K = c_K f_R^m. \]
Analytical Results

- **Kinetically Modified** non-MHI is defined in the JF with the following ingredients

\[V_{HI} = \frac{\lambda^2 (\phi^2 - M^2)^2}{16}, \quad \text{with} \quad f_R = 1 + c_R \phi^2 \quad \text{and} \quad f_K = c_K f_R^m. \]

- The slow-roll parameters are determined using the standard formulae in the EF:

\[\bar{\epsilon} = \frac{8}{\phi^2 c_K f_R^{1+m}} \quad \text{and} \quad \bar{\eta} = \left(\frac{3}{2} - \left(1 + (1 + m)c_R \phi^2 / 2 \right) \right) \bar{\epsilon}. \]

- The number of e-foldings is calculated to be

\[\bar{N} \approx \frac{c_K \phi^2}{2n} \frac{f_R^{1+m} - 1}{(1 + m)c_R \phi^2} \Rightarrow \phi_\star \approx \sqrt{\frac{f_{m \star} - 1}{c_K}}, \]

where \(f_{m \star} = \left(1 + 8(m + 1)r_{RK} \bar{N}_\star \right)^{1/(1+m)} \).

- For every \(m \), there is a lower bound on \(c_K \), above which \(\phi_\star < 1 \). Indeed, \(\phi_\star < 1 \Rightarrow c_K \geq (f_{m \star} - 1)/r_{RK} \).
Analytical Results

- **Kinetically Modified** non-MHI is defined in the JF with the following ingredients

\[V_{HI} = \lambda^2 \left(\phi^2 - M^2 \right)^2 / 16, \quad \text{With } f_R = 1 + c_R \phi^2 \quad \text{AND} \quad f_K = c_K f_R^m. \]

- The **Slow-Roll Parameters Are Determined Using the Standard Formulae in the EF**:

\[\tilde{e} = 8(\phi^2 c_K f_R^{1+m}) \quad \text{AND} \quad \tilde{\eta} = \left(3/2 - \left(1 + (1 + m)c_R \phi^2 / 2 \right) \right)\tilde{e}. \]

- The **Number of e-foldings Is Calculated to be**

\[\tilde{N}_* \approx \frac{c_K \phi_*^2}{2n} \frac{f_R^{1+m} - 1}{(1 + m) c_R \phi_*^2} \quad \Rightarrow \quad \phi_* \approx \sqrt{\frac{f_R^{1+m} - 1}{c_K}}, \]

where \(f_R^{1+m} = (1 + 8(m + 1)r_{RK}\tilde{N}_*)^{1/(1+m)}. \)

- For every \(m \), there is a **Lower Bound on \(c_K \)**, above which \(\phi_* < 1 \). Indeed, \(\phi_* < 1 \Rightarrow c_K \geq (f_R^{1+m} - 1) / r_{RK}. \)

- The **Normalization of \(A_s \) Implies A Dependence of \(\lambda \) on \(c_K \) for Every \(r_{RK} \)**, i.e. \(\lambda = 16 \sqrt{3A_s \pi c_K r_{RK}^{3/2} / (f_R^{1+m} - 1)^{3/2} f_R^{(1+m)/2}}. \)

- A **Clear Efficient Dependence of The Observables On \(r_{RK} \)** Arises. Indeed,

\[n_s = 1 - (f_R^{1+m} - 1) \frac{m - 1 + (m + 2)f_R^{1+m}}{(f_R^{1+m} - 1)f_R^{1+m}(1 + m)\tilde{N}_*}, \quad r = \frac{16(f_R^{1+m} - 1)}{(f_R^{1+m} - 1)f_R^{1+m}(1 + m)\tilde{N}_*}, \quad \alpha_s = \alpha_s \left(f_R^{1+m}, \tilde{N}_*, r_{RK} \right). \]

- E.g., Expanding the Relevant Formulas for \(1 / \tilde{N}_* \ll 1 \) We Find For \(m = 1 \):

\[n_s \approx 1 - 3/2 \tilde{N}_* - 3/8(\tilde{N}_* r_{RK})^{1/2}, \quad r \approx 1/2\tilde{N}_* r_{RK} + 2/(\tilde{N}_* r_{RK})^{1/2}, \quad \alpha_s \approx -3/2\tilde{N}_* - 9/16(\tilde{N}_* r_{RK})^{1/2}. \]
Numerical Results

- The free parameters of the models, for fixed m, are r_{RK} and λ/c_K (and not c_K, c_R and λ). Since if we perform a rescaling $\phi = \tilde{\phi}/\sqrt{c_K}$ then $f_K = f_R^m$, with $f_R = 1 + r_{RK}\tilde{\phi}^{n/2}$ and $V_{HI} \approx \lambda^2\tilde{\phi}^4/16c_K^2$ for $M < 1$.

Numerical Results

- The free parameters of the models, for fixed \(m \), are \(r_{RK} \) and \(\lambda/c_K \) (and not \(c_K \), \(c_R \) and \(\lambda \)). Since if we perform a rescaling \(\phi = \tilde{\phi}/\sqrt{c_K} \) then \(f_K = f_R^m \), with \(f_R = 1 + r_{RK} \tilde{\phi}^{n/2} \) and \(V_{HI} \approx \lambda^2 \tilde{\phi}^4/16c_K^2 \) for \(M < 1 \).

- Imposing the Planck constraints for \(\bar{N}_* = 55 \) we obtain the following allowed curves:
Numerical Results

- The free parameters of the models, for fixed m, are r_{RK} and λ/c_K (and not c_K, c_R and λ). Since if we perform a rescaling $\phi = \tilde{\phi}/\sqrt{c_\text{K}}$ then $f_\text{K} = f_\text{R}^m$, with $f_\text{R} = 1 + r_{\text{RK}}\tilde{\phi}^{n/2}$ and $V_{\text{HI}} \approx \lambda^2 \phi^4/16c_\text{K}^2$. For $M < 1$.

- Imposing the Planck constraints for $\hat{N}_* = 55$ we obtain the following allowed curves:

- For $m = 0$ we reveal the results of the original non-MHI although with $\phi < 1$.

C. Pallis

Gravitational Waves & Leptogenesis From Higgs Inflation in SUGRA
Numerical Results

- **The Free Parameters Of The Models, For Fixed m, are** r_{RK} **and** λ/c_K **(and not** c_K, c_R **and** λ). **Since**
- **If We Perform A Rescaling** $\phi = \tilde{\phi}/\sqrt{c_K}$ **Then** $f_K = f_R^m$, **With** $f_R = 1 + r_{RK} \tilde{\phi}^{n/2}$ **and** $V_{HI} \approx \lambda^2 \tilde{\phi}^4/16c_K^2$ **For** $M < 1$.
- **Imposing The Planck Constraints for** $\tilde{N}_* = 55$ **we obtain the Following Allowed Curves:**

![Graph showing allowed curves for r_{002} and n_s](image)

- **For** $m = 0$ **we reveal the results of the original non-MHI although with** $\phi < 1$.
- **For** $m > 0$ **the curves move to the right of the line for** $m = 0$ **and fill the 1-σ observationally favored ranges for quite natural** r_{RK}’s — e.g. $0.0048 \lesssim r_{RK} \lesssim 0.5$ **for** $m = 1$.
- **In SUGRA Realizations Of The Models the Positivity Of** κ_- **Provides An Upper Bound on** r_{RK} **which is Translated to a Lower Bound on** r, **more restrictive than that arising from** $r_{RK} \leq 1$.

Inflation Analysis

Variants of Non-Minimal Higgs Inflation (non-MHI)

<table>
<thead>
<tr>
<th>The SUGRA Embedding</th>
<th>Building A B – L GUT</th>
<th>Post-Inflationary Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Pallis

Gravitational Waves & Leptogenesis From Higgs Inflation in SUGRA

7/18
Numerical Results

- The free parameters of the models, for fixed m, are $r_{R K}$ and λ/c_K (and not c_K, c_R and λ). Since if we perform a rescaling $\phi = \tilde{\phi}/\sqrt{c_K}$ then $f_K = f_R^m$, with $f_R = 1 + r_{R K} \tilde{\phi}^{2n/2}$ and $V_{H I} \approx \lambda^2 \tilde{\phi}^4/16c_K^2$ for $M < 1$.

- Imposing the Planck constraints for $N_\star = 55$ we obtain the following allowed curves:

For $m = 0$ we reveal the results of the original non-MHI although with $\phi < 1$.

For $m > 0$ the curves move to the right of the line for $m = 0$ and fill the 1-σ observationally favored ranges for quite natural $r_{R K}$’s – e.g. $0.0048 \lesssim r_{R K} \lesssim 0.5$ for $m = 1$.

In SUGRA realizations of the models the positivity of κ_- provides an upper bound on $r_{R K}$ which is translated to a lower bound on r, more restrictive than that arising from $r_{R K} \lesssim 1$.

For $m = 1$, $n_s = 0.968$ entails $r_{R K} = 0.015$ which corresponds to $r = 0.043$. Lying within the 65% c.l allowed margin.

The achieved r’s are possibly detectable in the next generation experiments is expected to achieve a precision for r of the order of 10^{-3}. E.g., Core+, LiteBird, Bicep3/it Keck Array.
Numerical Results

- **The Free Parameters Of The Models, For Fixed m**, are \(r_{RK} \) and \(\lambda/c_K \) (and not \(c_K \), \(c_R \) and \(\lambda \)). Since

 If We Perform A Rescaling \(\phi = \bar{\phi}/\sqrt{c_K} \) Then \(f_K = f_R^m \), With \(f_R = 1 + r_{RK}\bar{\phi}^{n/2} \) and \(V_{HI} \approx \lambda^2\bar{\phi}^4/16c_K^2 \) For \(M < 1. \)

- **Imposing the Planck Constraints for \(\bar{N}_* = 55 \) we obtain the following allowed curves:**

 ![Graph showing allowed regions for \(r_{RK} \) and \(n_s \) for different values of \(m \).]

 - For \(m = 0 \) we reveal the results of the original non-MHI Although With \(\phi < 1. \)
 - For \(m > 0 \) the curves move to the right of the line for \(m = 0 \) and fill the 1-\(\sigma \) observationally favored ranges for quite natural \(r_{RK} \)'s – e.g. \(0.0048 \leq r_{RK} \leq 0.5 \) for \(m = 1. \)
 - In SUGRA Realizations Of The Models the Positivity of \(\kappa \) Provides an Upper Bound on \(r_{RK} \) Which is Translated to a Lower Bound on \(r \), More Restrictive Than That Arising from \(r_{RK} \leq 1. \)
 - For \(m = 1 \), \(n_s = 0.968 \) entails \(r_{RK} = 0.015 \) Which Corresponds to \(r = 0.043 \). Lying Within The 65% c.l Allowed Margin.
 - The Achieved \(r \)'s are Possibly Detectable in the Next Generation Experiments is Expected To Achieve A Precision For \(r \) of the Order of \(10^{-3} \). E.g., Core+, LiteBird, Bicep3/it Keck Array.
 - Repeating the Same Analysis For \((-1) \leq m \leq 10 \) We Obtain \(0.2 \leq m \leq 4 \) & \(0.0029 \leq r \leq 0.07 \) For \(n_s = 0.968. \)
THE (SEMI)LOGARITHMIC KÄHLER POTENTIAL

THE GENERAL FRAMEWORK

- **The General EF Action For The Scalar Fields** z^α **Plus Gravity In Four Dimensional, $N = 1$ SUGRA is:**

$$S = \int d^4x \sqrt{-g} \left(-\frac{1}{2} \hat{R} + K_{\alpha\beta} \tilde{g}^{\mu\nu} D_\mu z^\alpha D_\nu z^{\star \beta} - \tilde{V} \right)$$

Where $\tilde{V} = \tilde{V}_F + \tilde{V}_D$,

K is the Kähler potential with $K_{\alpha\beta} = K_{\zeta\lambda} z^\zeta z^{\star \lambda} = \frac{\partial^2 K}{\partial z^\alpha \partial z^{\star \beta}} > 0$ and $k^{\alpha}_{\beta} K_{\alpha\gamma} = \delta_{\gamma}^{\beta}$; $D_\mu z^\alpha = \partial_\mu z^\alpha - A_\mu k^\alpha_A$.

(A_μ^A: the Vector Gauge Fields and k^α_A: the Killing Vector, Defining The Gauge Transformations Of The Scalars.)

$$\tilde{V}_F = e^K \left(K_{\alpha\beta} F_\alpha F^{\star \beta} - 3|W|^2 \right) \quad \text{with} \quad F_\alpha = W_{\zeta\alpha} z^\zeta + K_{\zeta\alpha} W; \quad \tilde{V}_D = \frac{1}{2} g^2 D_\alpha D_\alpha \quad \text{with} \quad D_\alpha = z_{\alpha} (T_\alpha)^A_B K_{A\beta}.$$

Therefore, Implementing non-MHI Within SUGRA Requires The Appropriate Selection Of W and K

The (Semi)Logarithmic Kähler Potential

The General Framework

- The General EF Action For The Scalar Fields z^α Plus Gravity In Four Dimensional, $N = 1$ SUGRA is:

$$S = \int d^4 x \sqrt{-g} \left(-\frac{1}{2} \mathcal{R} + K_{\alpha\bar{\beta}} \tilde{g}^{\mu\nu} D_\mu z^\alpha D_\nu z^{\bar{\beta}} - \hat{V} \right) \text{ where } \hat{V} = \hat{V}_F + \hat{V}_D,$$

where K is the Kähler potential with $K_{\alpha\bar{\beta}} = K_{\bar{\alpha}z^{\bar{\beta}}} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{\bar{\beta}}} > 0$ and $K^{\bar{\beta}\alpha} K_{\alpha\bar{\gamma}} = \delta^{\bar{\beta}}_{\bar{\gamma}}$; $D_\mu z^\alpha = \partial_\mu z^\alpha - A_\mu A^\alpha_{\bar{\alpha}}$; $\hat{V}_F = e^K \left(K^{\alpha\bar{\beta}} F_\alpha F_{\bar{\beta}} - 3|W|^2 \right)$ with $F_\alpha = W_{\bar{\alpha}} + K_{\bar{\alpha}z} W$; $\hat{V}_D = \frac{1}{2} g^2 D_a D_a$ with $D_a = z_\alpha (T_a)^\alpha_{\bar{\beta}} z^{\bar{\beta}}$.

Therefore, implementing non-MHI within SUGRA requires the appropriate selection of W and K.

- If we set $K = -N \ln \left(-\frac{\Omega}{N} \right)$ and perform a conformal transformation, S in JF Reads

$$S = \int d^4 x \sqrt{-g} \left(\frac{\Omega}{2N} \mathcal{R} + \left(\Omega_{\bar{z}^{\alpha}z^{\bar{\beta}}} + \frac{3 - N}{N} \frac{\Omega_{\bar{z}^{\alpha}}}{} \frac{\Omega_{\bar{z}^{\bar{\beta}}}}{\Omega} \right) D_\mu z^\alpha D^\mu z^{\bar{\beta}} - \frac{27}{N^3} \Omega A_\mu A^\mu - V \right), \text{ } \Omega: \text{ Frame Function}$$

The General Framework

- The General EF Action for the Scalar Fields z^α Plus Gravity in Four Dimensional, $N = 1$ SUGRA is:

$$S = \int d^4x \sqrt{-g} \left(-\frac{1}{2} \mathcal{R} + K_{\alpha\beta} \bar{g}^{\mu\nu} D_\mu z^\alpha D_\nu z^\beta - \bar{V} \right)$$

where $\bar{V} = \bar{V}_F + \bar{V}_D$,

K is the Kähler Potential with $K_{\alpha\beta} = K_{z^\alpha z^*\beta} = \frac{\partial^2 K}{\partial z^\alpha \partial z^\beta} > 0$ and $K^\alpha_{\beta\gamma} K_{\alpha\gamma} = \delta^\beta_{\gamma}$; $D_\mu z^\alpha = \partial_\mu z^\alpha - A_\mu z^\alpha$;

$(A_\mu^A$: The Vector Gauge Fields and k_A^α: the Killing Vector, Defining the Gauge Transformations Of the Scalars.)

$$\bar{V}_F = e^K \left(K^{\alpha\beta} F_\alpha F^*_\beta - 3|W|^2 \right) \text{ with } F_\alpha = W_{z^\alpha} + K_{z^\alpha} W; \quad \bar{V}_D = \frac{1}{2} g^2 D_a D_a \text{ with } D_a = z^\alpha (T_a)^\alpha_{\beta} K_{z^\beta}.$$

Therefore, implementing non-MHI within SUGRA requires the appropriate selection of W and K.

- If we set $4 K = -N \ln \left(-\Omega/N \right)$ and perform a conformal transformation, S in JF reads

$$S = \int d^4x \sqrt{-\bar{g}} \left(\frac{\Omega}{2N} \mathcal{R} + \left(\frac{\Omega}{N} \frac{\Omega z^\alpha}{\Omega} \right) \frac{3 - N}{N} \frac{D_\mu z^\alpha D^\mu z^\beta}{\Omega} - \frac{27}{N^2} \Omega A_\mu A^\mu - V \right), \quad \Omega: \text{ Frame Function}$$

- We observe that Ω enters the kinetic terms of the z^α's too. S can exhibit non-minimal couplings of z^α's to \mathcal{R} if

 - $A_\mu = 0$ where $A_\mu = -i N \left(D_\mu z^\alpha \Omega_\alpha - D_\mu z^{*\alpha} \Omega_{*\alpha} \right) / 6 \Omega$. This happens when $\text{arg} z^\alpha = 0$ or $z^\alpha = 0$ during inflation;

 - We can decompose Ω to an holomorphic $\Omega_H = \Omega_H(z^\alpha)$ and a kinetic (real) $\Omega_K = \Omega_K(z^\alpha z^{*\alpha})$ part, with $\Omega_H \gg \Omega_K \simeq \delta_{\alpha\beta} z^\alpha z^{*\beta}$ where we restrict ourselves to the lowest order quadratic terms. Therefore

$$\Omega = \Omega_K - N \left(\Omega_H(z^\alpha) + \Omega_H^{*}(z^{*\alpha}) \right) \Rightarrow K = -N \ln \left(\Omega_H(z^\alpha) + \Omega_H^{*}(z^{*\alpha}) - \Omega_K/N \right).$$

Although $N = 3$ is standard since it assures canonical terms for z_α's, $0 < N \neq 3$ is totally acceptable.

C. Pallis

Gravitational Waves & Leptogenesis From Higgs Inflation in SUGRA
Selecting Conveniently the Super- and Kähler Potential Potential

- **We Use 3 Superfields** $z^1 = \Phi$, $z^2 = \bar{\Phi}$, **Charged Under a Local Symmetry**, e.g. $U(1)_{B-L}$, and $z^3 = S$ ("Stabilizer" Field).
- **W is Uniquely Determined Using** $U(1)_{B-L}$ **and R Symmetries.**

$$W = \lambda S \left(\Phi \bar{\Phi} - M^2/4 \right) \implies \langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M_{BL}/2,$$

Since in the SUSY limit we get

$$V_{HI} \sim \lambda^2 |\Phi \bar{\Phi} - M^2/4|^2 + \lambda^2 |S|^2 (|\Phi|^2 + |\bar{\Phi}|^2) + D - \text{terms}$$

5 C.P. and N. Toumbas (2016).
SELECTING CONVENIENTLY THE SUPER- AND KÄHLER POTENTIAL POTENTIAL

- **We use 3 superfields** $z^1 = \Phi$, $z^2 = \bar{\Phi}$, **charged under a local symmetry**, e.g. $U(1)_{B-L}$, and $z^3 = S$ ("stabilizer" field).
- **W is uniquely determined using $U(1)_{B-L}$ and R symmetries.**

$$W = \lambda S (\bar{\Phi} \Phi - M^2/4) \quad \implies \quad \langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M_{BL}/2.$$

Since in the SUSY limit we get $V_{HI} \sim \lambda^2 |\Phi \bar{\Phi} - M^2/4|^2 + \lambda^2 |S|^2 (|\Phi|^2 + |\bar{\Phi}|^2) + D - terms$

- **If we set** $S = 0$, **the only surviving term** of \tilde{V} is

$$\tilde{V}_{HI} = e^K K \bar{S} S^* |W_S|^2 = \lambda^2 K \bar{S} S^* / f_R^n \quad \text{where} \quad f_R = \Omega / N, \quad \text{and} \quad K = -N \ln f_R.$$

\[5\text{ C.P. and N. Toumbas (2016).} \]
Softly Broken Shift Symmetry For Higgs Fields

Selecting Conveniently the Super- and Kähler Potential Potential

- We use 3 superfields \(z^1 = \Phi, z^2 = \bar{\Phi} \), **charged under a local symmetry**, e.g. \(U(1)_{B-L} \) and \(z^3 = S \) (**Stabilizer** field).

- \(W \) is uniquely determined using \(U(1)_{B-L} \) and \(R \) symmetries.

\[
W = \lambda S \left(\Phi \bar{\Phi} - M^2/4 \right) \implies \langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M_{BL}/2, \\
\]

Since in the SUSY limit we get

\[
V_{HI} \sim \lambda^2 |\Phi \bar{\Phi} - M^2/4|^2 + \lambda^2 |S|^2 (|\Phi|^2 + |\bar{\Phi}|^2) + D - \text{terms} \\
\]

- If we set \(S = 0 \), the **only surviving term** of \(\tilde{V} \) is

\[
\tilde{V}_{HI} = e^{K} K^{SS^*} |W_S|^2 = \lambda^2 K^{SS^*} / f_R \quad \text{where} \quad f_R = -\Omega/N, \quad \text{and} \quad K = -N \ln f_R. \\
\]

- **Kinetically Modified non-MHI** could be obtained selecting the following Kähler Potential invariant under \(U(1)_{B-L} \) and \(R \):

\[
\tilde{K}_1 = -2 \ln (1 + c_+ F_+ - (1 + c_+ F_+)^m c_- F_-/2) + K_S \quad \text{or} \quad \tilde{K}_2 = -2 \ln (1 + c_+ F_+) + (1 + c_+ F_+)^m c_- F_- + K_S. \\
\]

Given that non-MHI takes place along the path with \(\Phi = \bar{\Phi}^* \) we can convince ourselves that \(1 + c_+ F_+ = f_R \) and \(F_- \) assists us to obtain \(f_K = c_K f_R^m \) where \(c_K = c_- \), \(c_R = c_+ \) and \(r_{RK} = r_\pm = c_+/c_- \).

*C.P. and N. Toumbas (2016).
SELECTING CONVENIENTLY THE SUPER- AND KÄHLER POTENTIAL POTENTIAL

- **We Use 3 Superfields** $z^1 = \Phi$, $z^2 = \bar{\Phi}$, **Charged Under a Local Symmetry**, e.g. $U(1)_{B-L}$, and $z^3 = S$ (**“Stabilizer” Field**).
- **W Is Uniquely Determined** Using $U(1)_{B-L}$ and R Symmetries.

\[
W = \lambda S \left(\bar{\Phi} \Phi - M^2/4 \right) \implies \langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M_{BL}/2.
\]

Since in the SUSY limit we get
\[
V_{HI} \sim \lambda^2 \left| \Phi \bar{\Phi} - M^2/4 \right|^2 + \lambda^2 |S|^2 (|\Phi|^2 + |\bar{\Phi}|^2) + D - \text{terms}
\]

- **If We Set** $S = 0$, **the Only Surviving Term** of \tilde{V} is

\[
\tilde{V}_{HI} = e^{K} K^S S^* \left| W_S \right|^2 = \lambda^2 K^S S^* / f_R^N \quad \text{WHERE} \quad f_R = -\Omega / N, \quad \text{AND} \quad K = -N \ln f_R.
\]

- **Kinetically Modified non-MHI** could be obtained selecting the following Kähler Potential **Invariant under** $U(1)_{B-L}$ and R:

\[
\tilde{K}_1 = -2 \ln \left(1 + c_+ F_+ - (1 + c_+ F_+)^m c_- F_- / 2 \right) + K_S \quad \text{OR} \quad \tilde{K}_2 = -2 \ln \left(1 + c_+ F_+ + (1 + c_+ F_+)^m - c_- F_- + K_S \right).
\]

Given that non-MHI takes place along the path with $\Phi = \bar{\Phi}^*$ we can convince ourselves that $1 + c_+ F_+ = f_R$ and F_- assists us to obtain $f_K = c_K f_R^m$ **where** $c_K = c_-, c_R = c_+$ **and** $r_{RK} = r_{\pm} = c_+/c_-$.

- **Stabilization of the $S = 0$ Direction** can be achieved without invoking higher order terms, if we select $S U(2)/U(1)$.

\[5\] C.P. and N. Toumbas (2016).
Selecting Conveniently the Super- and Kähler Potential Potential

- **We Use 3 Superfields** \(z^1 = \Phi, \ z^2 = \bar{\Phi}, \) **CHARGED Under a Local Symmetry**, e.g. \(U(1)_{B-L} \), and \(z^3 = S \) (**Stabilizer** Field).
- \(W \) is uniquely determined using \(U(1)_{B-L} \) and \(R \) symmetries.

\[
W = \lambda S \left(\Phi \Phi - M^2/4 \right) \rightarrow \langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M_{BL}/2,
\]

Since in the SUSY limit we get
\[
V_{\text{HI}} \sim \lambda^2 |\Phi \bar{\Phi} - M^2/4|^2 + \lambda^2 |S|^2 (|\Phi|^2 + |\bar{\Phi}|^2) + D \text{ – terms}
\]

- **If we set** \(S = 0 \), the **only surviving term** of \(\tilde{V} \) is

\[
\tilde{V}_{\text{HI}} = e^K K^{SS^*} \left| W_S \right|^2 = \lambda^2 K^{SS^*} / f^R \] where \(f^R = -\Omega/N \), and \(K = -N \ln f^R \).

- **Kinetically Modified non-MHI** could be obtained selecting the following Kähler potential invariant under \(U(1)_{B-L} \) and \(R \):

\[
\tilde{K}_1 = -2 \ln (1 + c_+ F_+ - (1 + c_+ F_+)^m c_- F_- / 2) + K_S \quad \text{or} \quad \tilde{K}_2 = -2 \ln (1 + c_+ F_+) + (1 + c_+ F_+)^{-m-1} c_- F_- + K_S
\]

Given that non-MHI takes place along the path with \(\Phi = \bar{\Phi}^* \) we can convince ourselves that \(1 + c_+ F_+ = f^R \) and \(F_- \) assists us to obtain \(f_K = c_K f^R \) where \(c_K = c_- \), \(c_R = c_+ \) and \(r_{RK} = r_{\pm} = c_+ / c_- \).

- **Stabilization of the** \(S = 0 \) **Direction** can be achieved without invoking higher order terms, if we select \(^5\):

\[
K_S = N_S \ln \left(1 + |S|^2 / N_S \right), \text{ which parameterizes the compact manifold } SU(2)/U(1).
\]

- For \(c_+ \ll c_- \), our models are completely **natural**, because the theory enjoys the following enhanced symmetries:

\[
\bar{\Phi} \rightarrow \bar{\Phi} + c^*, \ \Phi \rightarrow \Phi + c \ (c \in \mathbb{C}) \quad \text{and} \quad \frac{S}{\sqrt{N_S}} \rightarrow \frac{aS}{\sqrt{N_S}} + b + \frac{-b^* S}{\sqrt{N_S} + a^*} \text{ with } |a|^2 + |b|^2 = 1 \text{ in the limits } c_+ \to 0 \text{ & } \lambda \to 0
\]

\(^5\) C.P. and N. Toumbas (2016).
Selecting Conveniently the Super- and Kähler Potential Potential

- We use 3 superfields \(z^1 = \Phi, z^2 = \bar{\Phi}, \) charged under a local symmetry, e.g., \(U(1)_{B-L}, \) and \(z^3 = S \) ("stabilizer" field).
- \(W \) is uniquely determined using \(U(1)_{B-L} \) and \(R \) symmetries.

\[
W = \lambda S (\Phi \Phi - M^2/4) \quad \implies \quad \langle S \rangle = 0, \quad |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M_{BL}/2,
\]

Since in the SUSY limit we get

\[
V_{HI} \sim \lambda^2 \Phi \bar{\Phi} - M^2/4 \| S \|^2 (|\Phi|^2 + |\bar{\Phi}|^2) + D - \text{terms}
\]

- If we set \(S = 0 \), the only surviving term of \(\tilde{V} \) is

\[
\tilde{V}_{HI} = e^K K^{S \bar{S}} \left| W_S \right|^2 = \lambda^2 K^{S \bar{S}}/f_R^N \quad \text{where} \quad f_R = -\Omega/N, \quad \text{and} \quad K = -N \ln f_R.
\]

- Kinetically modified non-MHI could be obtained selecting the following Kähler potential invariant under \(U(1)_{B-L} \) and \(R \):

\[
\tilde{K}_1 = -2 \ln (1 + c_+ F_+ - (1 + c_+ F_+)^m c_- F_-/2) + K_S \quad \text{or} \quad \tilde{K}_2 = -2 \ln (1 + c_+ F_+) + (1 + c_+ F_+)^{m-1} c_- F_- + K_S.
\]

Given that non-MHI takes place along the path with \(\Phi = \bar{\Phi}^* \) we can convince ourselves that \(1 + c_+ F_+ \) \(f_R \) and \(F_- \) assists us to obtain \(f_K = c_K f_R^m \) where \(c_K = c_-, c_R = c_+ \) and \(r_{RK} = r_\pm = c_+/c_- \).

- Stabilization of the \(S = 0 \) direction can be achieved without invoking higher order terms, if we select \(5 \):

\[
K_S = N_S \ln \left(1 + |S|^2/N_S \right), \quad \text{which parameterizes the compact manifold} \ S U(2)/U(1).
\]

- For \(c_+ \ll c_- \), our models are completely natural, because the theory enjoys the following enhanced symmetries:

\[
\bar{\Phi} \to \Phi + c^*, \quad \Phi \to \Phi + c \quad (c \in \mathbb{C}) \quad \text{and} \quad S/\sqrt{N_S} \to \frac{aS}{\sqrt{N_S}} + b \quad \text{with} \quad |a|^2 + |b|^2 = 1 \quad \text{in the limits} \quad c_+ \to 0 \quad \text{and} \quad \lambda \to 0
\]

- For \(m = 0 \) [\(m = 1 \)], \(F_+ \) and \(F_- \) in \(\tilde{K}_1 [\tilde{K}_2] \) are totally decoupled, i.e., no higher order term is needed.

\[5\] C.P. and N. Toumbas (2016).

C. Pallis

Gravitational Waves & Leptogenesis From Higgs Inflation in SUGRA
A $B - L$ Extension of MSSM

Promoting to local the already existing $U(1)_{B-L}$ global symmetry of the MSSM, we obtain:

6 G. Dvali, G. Lazarides and Q. Shafi (1999).
A \(B - L \) Extension of MSSM

Promoting to local the already existing \(U(1)_{B-L} \) global symmetry of the MSSM, we obtain:

- A Convenient Candidate for Higgs-Inflaton. Since a GUT scale phase transition can be implemented via

\[
W_{\text{HI}} = \lambda S (\Phi \Phi - M^2/4), \quad \text{which can also support non-MHI.}
\]

\(^6\) G. Dvali, G. Lazarides and Q. Shafi (1999).
Beyond MSSM With Several Consequences

A $B - L$ Extension of MSSM

Promoting to local the already existing $U(1)_{B-L}$ global symmetry of the MSSM, we obtain:

- A Convenient Candidate for Higgs-Inflaton. Since a GUT scale phase transition can be implemented via

$$W_{HI} = \lambda S (\Phi\Phi - M^2/4),$$

which can also support non-MHI.

- Generation of Masses for the Light Neutrinos. Through the Type I Seesaw Mechanism which can be realized by the terms

$$W_{RHN} = \lambda_{ij} c \bar{\Phi} v_i^c v_j^c + h_{ij} v_i^c L_j H_u.$$

Note that the three RHs, v_i^c, are necessary to cancel the $B - L$ gauge anomaly.

6 G. Dvali, G. Lazarides and Q. Shafi (1999).
A B – L Extension of MSSM
Promoting To Local The Already Existing $U(1)_{B–L}$ Global Symmetry of the MSSM, We Obtain:

- **A Convenient Candidate for Higgs-Inflaton.** Since A GUT Scale Phase Transition can be Implemented Via

 $$W_{HI} = \lambda_S (\bar{\Phi} \Phi - M^2/4), \quad \text{Which Can Also Support non-MHI.}$$

- **Generation of Masses for the light Neutrinos.** Through The Type I Seesaw Mechanism Which can be Realized by the Terms

 $$W_{RHN} = \lambda_{ij\nu} \bar{\Phi} v_i^c v_j^c + h_{\nu ij} v_i^c L_j H_u.$$

Note that the Three RHNs, v_i^c, Are Necessary To Cancel the $B – L$ Gauge Anomaly.

- **A Motivation for the Origin of the μ Term.** This can be Explained If We Combine W_{HI} With

 $$W_{\mu} = \lambda_\mu S H_u H_d. (I)$$

The Part Of The Scalar Potential Which Includes The Soft Susy Breaking Terms Corresponding to $W_{HI} + W_{\mu}$

$$V_{\text{soft}} = \left(\lambda A_\lambda S \Phi \bar{\Phi} + \lambda_\mu A_\mu S H_u H_d - a_S S \lambda M^2 + \text{h.c.} \right) + m_\alpha^2 |z^\alpha|^2 \quad \text{with } z^\alpha = \Phi, \bar{\Phi}, S, H_u, H_d,$$

where $m_\alpha, A_\lambda, A_\mu$ and a_S are Soft Susy Breaking Mass Parameters. Minimizing $V_{\text{tot}} = V_{\text{SUSY}} + V_{\text{soft}}$ and Substituting in V_{soft} the SUSY v.e.vs of Φ and $\bar{\Phi}$ we get

$$\langle V_{\text{tot}}(S) \rangle = 2\lambda^2 M^2 S^2 - \lambda (|A_\lambda| + |a_S|) M^2 S,$$

where $m_S \ll M$

The Minimized $\langle V_{\text{tot}}(S) \rangle$ w.r.t S leads to a non Vanishing $\langle S \rangle$ as follows:

$$\partial \langle V_{\text{tot}}(S) \rangle / \partial S = 0 \quad \Rightarrow \quad \langle S \rangle \approx (|A_\lambda| + |a_S|) / 2\lambda.$$

Therefore, the Generated μ Parameter From Eq. (I) is $\mu = \lambda_\mu \langle S \rangle \approx \lambda_\mu (|A_\lambda| + |a_S|) / 2\lambda \sim \lambda_\mu m_{3/2} / \lambda$. Successful non-MHI Needs $\lambda_\mu \leq 9 \cdot 10^{-6}$ and $\lambda \geq 6.6 \cdot 10^{-4}$ ($r = 0.03$). Therefore, $\mu \geq 1 \text{ TeV}$ Implies $m_{3/2} \geq 75 \text{ TeV}$.

Note: 6 G. Dvali, G. Lazarides and Q. Shafi (1999).
The Relevant Super- & Kähler Potentials

- **We Focus on a Superpotential invariant under the** $G_{SM} \times U(1)_{B-L}$ **Gauge Group:**

 $$W = \lambda S \left(\bar{\Phi} \Phi - M^2 \right)$$

 to Achieve non-MHI & Break $U(1)_{B-L}$

 + $\lambda_{\mu S} H_u H_d$

 to Generate $\mu = \lambda_{\mu m_3/2}/\lambda \sim 1$ TeV

 + $\lambda_{ij} \bar{\Phi} v_i^c v_j^c$

 to Generate Majorana Masses for Neutrinos

 & **Ensure The Inflaton Decay**

 + $h_{vi j} v_i^c L_j H_u$

 to Generate Dirac Masses for Neutrinos

 + W **of MSSM with** $\mu = 0$

<table>
<thead>
<tr>
<th>Super-Fields</th>
<th>Representations under $G_{SM} \times U(1)_{B-L}$</th>
<th>Global Symmetries</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_i^c</td>
<td>$(1, 1, 1, -1)$</td>
<td>R</td>
</tr>
<tr>
<td>ν_i^c</td>
<td>$(1, 1, 1, -1)$</td>
<td>B</td>
</tr>
<tr>
<td>l_i</td>
<td>$(1, 1, 2, 1)$</td>
<td>L</td>
</tr>
<tr>
<td>u_i^c</td>
<td>$(3, 2, 1, 1/3)$</td>
<td>R</td>
</tr>
<tr>
<td>d_i^c</td>
<td>$(3, 2, 1, 1/3)$</td>
<td>B</td>
</tr>
<tr>
<td>q_i</td>
<td>$(\bar{3}, 2, -1/3)$</td>
<td>L</td>
</tr>
</tbody>
</table>

Matter Fields

<table>
<thead>
<tr>
<th>Higgs Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_d</td>
</tr>
<tr>
<td>H_u</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>$\bar{\Phi}$</td>
</tr>
<tr>
<td>Φ</td>
</tr>
</tbody>
</table>
The Relevant Super- & Kähler Potentials

- We focus on a superpotential invariant under the $G_{SM} \times U(1)_{B-L}$ gauge group:

$$W = \lambda S \left(\bar{\Phi} \Phi - M^2 \right)$$

To achieve non-MHI & break $U(1)_{B-L}$

+ $\lambda_{\mu} S H_u H_d$

To generate $\mu = \lambda_{\mu} m_3/\lambda \sim 1$ TeV

+ $\lambda_{ij} v_i^c v_j^c$

To generate majorana masses for neutrinos & ensure the inflaton decay

+ $h_{ij} v_i^c L_j H_u$

To generate dirac masses for neutrinos

+ W of MSSM with $\mu = 0$

<table>
<thead>
<tr>
<th>SUPER-FIELDS</th>
<th>REPRESENTATIONS UNDER $G_{SM} \times U(1)_{B-L}$</th>
<th>GLOBAL SYMMETRIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_i^c</td>
<td>$(1, 1, 1, -1)$</td>
<td>0</td>
</tr>
<tr>
<td>ν_i^c</td>
<td>$(1, 1, 1, -1)$</td>
<td>0</td>
</tr>
<tr>
<td>l_i</td>
<td>$(1, 1, 2, 1)$</td>
<td>2</td>
</tr>
<tr>
<td>u_i^c</td>
<td>$(3, 2, 1, 1/3)$</td>
<td>1</td>
</tr>
<tr>
<td>d_i^c</td>
<td>$(3, 2, 1, 1/3)$</td>
<td>1</td>
</tr>
<tr>
<td>q_i</td>
<td>$(\bar{3}, 2, 2, -1/3)$</td>
<td>1</td>
</tr>
</tbody>
</table>

Matter Fields

Higgs Fields

H_d	$(1, 2, -1/2, 0)$	0	0	0
H_u	$(1, 2, 1/2, 0)$	0	0	0
S	$(1, 1, 0, 0)$	4	0	0
$\bar{\Phi}$	$(1, 1, 0, 2)$	0	0	-2
Φ	$(1, 1, 0, -2)$	0	0	2

- The above W may cooperate with the following Kähler potential potentials which respect the imposed symmetries

$$K_1 = -2 \ln \left(1 + c_+ F_+ - (1 + c_+ F_+)^m c_- F_- / 2 \right) + N_S \ln \left(1 + \sum_X |X|^2 / N_S \right) \quad \text{(where } F_{\pm} = |\Phi \pm \Phi^*|^2 \text{)}$$

$$K_2 = -2 \ln \left(1 + c_+ F_+ \right) + (1 + c_+ F_+)^{m-1} c_- F_- + N_S \ln \left(1 + \sum_X |X|^2 / N_S \right) ,$$

$$K_3 = -2 \ln \left(1 + c_+ F_+ \right) + N_S \ln \left(1 + \sum_X |X|^2 / N_S + (1 + c_+ F_+)^{m-1} c_- F_- / N_S \right) , \quad \text{where } X = S, H_u, H_d, v_i^c .$$

Placing $\sum_X |X|^2$ outside the argument of \ln, we obtain tighter restrictions on λ_{μ} – see below.
The Inflationary Potential

- If we use the parametrization:
 \[\Phi = \phi e^{i\theta} \cos \theta_\Phi / \sqrt{2} \quad \text{and} \quad \bar{\Phi} = \phi e^{i\bar{\theta}} \sin \theta_\Phi / \sqrt{2} \quad \text{with} \quad 0 \leq \theta_\Phi \leq \pi / 2 \quad \text{and} \quad X^\beta = (X_1^\beta + iX_2^\beta) / \sqrt{2} \]

Where \(X^\beta = S, H_u, H_d, \nu_i^c \). We can show that a D-flat direction is

\[\theta = \bar{\theta} = 0, \quad \theta_\Phi = \pi / 4 \quad \text{and} \quad X^\beta = 0 \quad (\text{: I}) \]
The Inflationary Potential

- If we use the parametrization:
 \[\Phi = \phi e^{i\theta} \cos \theta_{\Phi} / \sqrt{2} \quad \text{and} \quad \bar{\Phi} = \phi e^{i\bar{\theta}} \sin \theta_{\Phi} / \sqrt{2} \quad \text{with} \quad 0 \leq \theta_{\Phi} \leq \pi / 2 \quad \text{and} \quad X^\beta = \left(X_1^\beta + iX_2^\beta \right) / \sqrt{2} \]

Where \(X^\beta = S, H_u, H_d, \nu_i^c \). We can show that a D-flat direction is

\[\theta = \bar{\theta} = 0, \quad \theta_{\Phi} = \pi / 4 \quad \text{and} \quad X^\beta = 0 \quad (\text{: I}) \]

- The only surviving term of \(\tilde{V}_F \) along the path in Eq. (I) is (independent of \(c_- \) & \(m \))

\[\tilde{V}_{HI} = e^K K^{S*S^*} |W_S|^2 = \frac{\lambda^2 (\phi^2 - M^2)^2}{16 f_R^2}, \quad \text{where} \quad f_R = 1 + c_+ \phi^2 \quad \text{plays the role of a non-minimal coupling} \]
The Inflationary Potential

- If we use the parametrization:
 \[\Phi = \phi e^{i\theta} \cos \theta_\Phi / \sqrt{2} \quad \text{and} \quad \bar{\Phi} = \phi e^{i\bar{\theta}} \sin \theta_\Phi / \sqrt{2} \quad \text{with} \quad 0 \leq \theta_\Phi \leq \pi/2 \quad \text{and} \quad X^\beta = \left(X_1^\beta + iX_2^\beta \right) / \sqrt{2} \]

Where \(X^\beta = S, H_u, H_d, \nu_i^c \). We can show that a D-flat direction is

- \(\theta = \bar{\theta} = 0, \theta_\Phi = \pi/4 \) and \(X^\beta = 0 \) (: I)

- The only surviving term of \(\hat{V}_F \) along the path in Eq. (I) is (independent of \(c_- \) & \(m \))
 \[\hat{V}_{HI} = e^K K^{SS^*} |W_S|^2 = \frac{\lambda^2 (\phi^2 - M^2)^2}{16 f_R^2}, \quad \text{where} \quad f_R = 1 + c_+ \phi^2 \text{ plays the role of a non-minimal coupling} \]

- Along the path in Eq. (I) the Kähler metric \(K_{\alpha\beta} \) takes the form
 \[(K_{\alpha\beta}) = \text{diag} \left(M_K, K_{\bar{\beta}\bar{\beta}} \right) \quad \text{with} \quad M_K = \frac{1}{f_R^2} \begin{pmatrix} \kappa & \bar{\kappa} \\ \bar{\kappa} & \kappa \end{pmatrix}, \quad \begin{cases} \kappa = c_- f_R^{1+m} - 2c_+ \\ \bar{\kappa} = 2c_+^2 \phi^2 \end{cases} \quad \text{and} \quad K_{\bar{\beta}\bar{\beta}} = 1 \]

- \(M_K \) can be diagonalized via a similarity transformation as follows:
 \[U_K M_K U_K^T = \text{diag} (\kappa_+, \kappa_-), \quad \text{where} \quad U_K = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \begin{cases} \kappa_+ = c_- \left(f_R^{1+m} + 2r_\pm (c_+ \phi^2 - 1) \right) / f_R^2, \\ \kappa_- = c_- \left(f_R^m - 2r_\pm \right) / f_R > 0 \quad \Rightarrow \quad r_\pm < 1/2 \end{cases} \]
The Inflationary Scenario

The Inflationary Potential

- If we use the parametrization:
 \[\Phi = \phi e^{i\theta} \cos \theta_\Phi / \sqrt{2} \quad \text{and} \quad \tilde{\Phi} = \phi e^{i\tilde{\theta}} \sin \theta_\Phi / \sqrt{2} \quad \text{with} \quad 0 \leq \theta_\Phi \leq \pi/2 \quad \text{and} \quad X^\beta = \left(X_1^\beta + iX_2^\beta \right) / \sqrt{2} \]

 Where \(X^\beta = S, H_u, H_d, \nu^c \). We can show that a D-flat direction is

 \[\theta = \tilde{\theta} = 0, \; \theta_\Phi = \pi/4 \quad \text{and} \quad X^\beta = 0 \] (I)

- The only surviving term of \(\tilde{V}_F \) along the path in Eq. (I) is (INDEPENDENT of \(c_- \) & \(m \))

 \[\tilde{V}_{HI} = e^K K^{SS*} |W,S|^2 = \frac{\lambda^2 (\phi^2 - M^2)^2}{16 f_R^2}, \quad \text{where} \quad f_R = 1 + c_+ \phi^2 \] PLAYS THE ROLE OF A NON-MINIMAL COUPLING

- Along the path in Eq. (I) the Kähler metric \(K_{\alpha\beta} \) takes the form

 \[\left(K_{\alpha\beta} \right) = \text{diag} \left(M_K, K_{\beta\beta} \right) \quad \text{with} \quad M_K = \frac{1}{f_R^2} \begin{pmatrix} \kappa & \bar{k} \\ \bar{k} & \kappa \end{pmatrix}, \quad \left\{ \begin{align*} \kappa &= c_- f_R^{1+m} - 2c_+ \\ \bar{k} &= 2c_+^2 \phi^2 \end{align*} \right\} \quad \text{and} \quad K_{\beta\beta} = 1 \]

- \(M_K \) can be diagonalized via a similarity transformation as follows:

 \[U_K M_K U_K^\top = \text{diag} \left(\kappa_+, \kappa_- \right), \quad \text{where} \quad U_K = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \left\{ \begin{align*} \kappa_+ &= c_- \left(f_R^{1+m} + 2r_\pm (c_+ \phi^2 - 1) \right) / f_R^2, \\ \kappa_- &= c_- \left(f_R^m - 2r_\pm \right) / f_R > 0 \Rightarrow r_\pm < 1/2 \end{align*} \right. \]

- The EF canonically normalized fields, which are denoted by hat, can be obtained as follows:

 \[\frac{d\tilde{\phi}}{d\phi} = J = \sqrt{\kappa_+}, \quad \tilde{\theta}_+ = \frac{J \phi \theta_+}{\sqrt{2}}, \quad \tilde{\theta}_- = \sqrt{\frac{\kappa_-}{2}} \phi \theta_- \quad \text{and} \quad \tilde{\theta}_\Phi = \phi \sqrt{\kappa_-} \left(\theta_\Phi - \frac{\pi}{4} \right), \quad \left(\tilde{x}_1^\beta, \tilde{x}_2^\beta \right) = \left(x_1^\beta, x_2^\beta \right) \]

- We can check the stability of the trajectory in Eq. (I) w.r.t. the fluctuations of the various fields, i.e.

 \[\frac{\partial V}{\partial \tilde{z}^{\alpha\beta}} \bigg|_{\text{Eq. (I)}} = 0 \quad \text{and} \quad \tilde{m}^2_{\tilde{z}^{\alpha\beta}} > 0 \quad \text{where} \quad \tilde{m}^2_{\tilde{z}^{\alpha\beta}} = \text{Egv} \left[\tilde{M}_{\alpha\beta}^2 \right] \quad \text{with} \quad \tilde{M}_{\alpha\beta}^2 = \frac{\partial^2 V}{\partial \tilde{z}^{\alpha\beta} \partial \tilde{z}^{\alpha\beta}} \bigg|_{\text{Eq. (I)}} \quad \text{and} \quad z^{\alpha} = \theta_- \phi, \theta_+ \phi, x_1^\beta, x_2^\beta. \]
The Inflationary Scenario

Stability and Radiative Corrections

The mass spectrum along the inflationary trajectory

<table>
<thead>
<tr>
<th>Fields</th>
<th>Eigestates</th>
<th>Masses Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$K = K_1$</td>
</tr>
<tr>
<td>2 Real Scalars</td>
<td>$\tilde{\theta}_+$</td>
<td>$\tilde{m}^2_{\theta_+}$</td>
</tr>
<tr>
<td></td>
<td>$\tilde{\theta}_\Phi$</td>
<td>$\tilde{m}^2_{\theta_\Phi}$</td>
</tr>
<tr>
<td>1 Complex Scalars</td>
<td>$\tilde{s}, \tilde{\bar{s}}$</td>
<td>\tilde{m}^2_{s}</td>
</tr>
<tr>
<td>4 Complex Scalars</td>
<td>H_\pm</td>
<td>$\tilde{m}^2_{H_\pm}$</td>
</tr>
<tr>
<td>3 Complex Scalars</td>
<td>ν^c_i</td>
<td>$\tilde{m}^2_{\nu^c_i}$</td>
</tr>
<tr>
<td>1 Gauge boson</td>
<td>A_{BL}</td>
<td>M^2_{BL}</td>
</tr>
<tr>
<td>4 Weyl Spinors</td>
<td>$\tilde{\psi}_\pm$</td>
<td>$\tilde{m}^2_{\psi_\pm}$</td>
</tr>
<tr>
<td></td>
<td>$\psi_{i\nu^c}$</td>
<td>$\tilde{m}^2_{\psi_{i\nu^c}}$</td>
</tr>
<tr>
<td></td>
<td>$\lambda_{BL}, \tilde{\psi}_{\Phi-}$</td>
<td>M^2_{BL}</td>
</tr>
</tbody>
</table>

- We can obtain $\forall \alpha, \tilde{m}_c^2 > 0$. Especially
 \[
 \tilde{m}_s^2 > 0 \iff N_S < 6 \quad \text{and} \quad \tilde{m}_{H-}^2 > 0 \iff \lambda_\mu \leq \lambda (1 + 1/N_S) \phi / 4 \quad \text{(E.G.} \quad \lambda_\mu < 9 \cdot 10^{-6} \quad \text{for} \quad r_\pm = 0.03).\]
- We can obtain $\forall \alpha, \tilde{m}_c^2 > \tilde{H}_HI^2$ and so any inflationary perturbations of the fields other than ϕ are safely eliminated;
- $M_{BL} \neq 0$ signals the fact that $U(1)_{B-L}$ is broken and so, no Topological Defects are produced.
- The one-loop radiative corrections à la Coleman-Weinberg to \tilde{V}_{HI} can be kept under control provided that
 - $M_{BL}^2 > m_P^2$ and $\tilde{m}_{\theta_\Phi}^2 > m_P^2$ are not taken into account.
- The renormalization group mass scale Λ is determined by requiring $\Delta \tilde{V}_{HI}(\phi_\star) = 0$ or $\Delta \tilde{V}_{HI}(\phi_f) = 0$.
Perturbative Reheating

- At the SUSY vacuum, the Inflaton and the RHNS, ν^c_i, acquire masses $\tilde{m}_{\delta \phi}$ and M_{ν^c} respectively given by

$$\tilde{m}_{\delta \phi} \simeq \frac{\lambda M_{BL}}{\sqrt{2(1 - 2r_\pm)\langle J \rangle}} \quad \text{(E.g. } 9 \cdot 10^{10} \text{ GeV for } r_\pm = 0.03) \quad \text{and} \quad M_{\nu^c} = 2 \lambda_{\nu^c} M_{BL},$$

where we restore m_P in the formulas. The mass $\tilde{m}_{\delta \phi}$ is only r_\pm dependent and increases with it.
Perturbative Reheating

- At the SUSY vacuum, the inflaton and the RHNS, \(\tilde{\nu}_i \), acquire masses \(\tilde{m}_{\delta \phi} \) and \(M_{i \nu \nu} \) respectively given by

\[
\tilde{m}_{\delta \phi} \simeq \frac{\lambda M_{BL}}{\sqrt{2(1-2r_\pm)}} \quad \text{(E.g. } 9 \cdot 10^{10}\text{ GeV for } r_\pm = 0.03) \quad \text{and} \quad M_{i \nu \nu} = 2\lambda_{i \nu \nu} M_{BL},
\]

where we restore \(m_\nu \) in the formulas. The mass \(\tilde{m}_{\delta \phi} \) is only \(r_\pm \) dependent and increases with it.

- The inflaton can decay perturbatively into:

 - A pair of RHNS \((\tilde{\nu}_i) \) with Majorana masses \(M_{i \nu \nu} \) through the following decay width

\[
\Gamma_{\delta \phi \to \nu_i^c} = \frac{\lambda_{i \nu \nu}^2}{16\pi} \tilde{m}_{\delta \phi} \left(1 - \frac{4M_{i \nu \nu}^2}{\tilde{m}_{\delta \phi}}\right)^{3/2} \quad \text{with} \quad \lambda_{i \nu \nu} = \frac{\tilde{m}_{\delta \phi}}{2\langle J \rangle M} \left(1 - 3c_+ \frac{M^2}{m_\nu^2}\right) \quad \text{arising from} \quad L_{\delta \phi \to \nu_i^c} = \lambda_{i \nu \nu} \tilde{\phi} \nu_i^c \nu_i^c.
\]

 - \(H_u \) and \(H_d \) through the following decay width

\[
\Gamma_{\delta \phi \to H} = \frac{2}{8\pi} \lambda_H^2 \tilde{m}_{\delta \phi} \quad \text{with} \quad \lambda_H = \frac{\lambda_H}{\sqrt{2}} \left(1 - 2c_+ \frac{M^2}{m_\nu^2}\right) \quad \text{arising from} \quad L_{\delta \phi \to H_u H_d} = -\lambda_H \tilde{m}_{\delta \phi} \tilde{\phi} H_u^* H_d^*.
\]

 - MSSM (s)-Particles \(XYZ \) through the following \(c_+ \)-dependent 3-body decay width

\[
\Gamma_{\delta \phi \to XYZ} = \frac{\lambda_y^2}{512\pi^3} \frac{14n_\text{f}}{m_\nu^2} \tilde{m}_{\delta \phi} \quad \text{with} \quad \lambda_y = 2y_3 c_+ \frac{M_{BL}}{\langle J \rangle m_\nu} \quad \text{and} \quad y_3 = h_{t,b,\tau}(\tilde{m}_{\delta \phi}) \approx 0.5.
\]

This decay arises from \(L_{\delta \phi \to XYZ} = -\lambda_y(\tilde{\phi}/m_\nu)(X\psi_Y\psi_Z + Y\psi_X\psi_Z + Z\psi_X\psi_Y) + \text{h.c.} \).
Inflaton Decay & non-Thermal Leptogenesis

Perturbative Reheating

- At the SUSY vacuum, the inflaton and the RHns, $\tilde{\nu}_i^c$, acquire masses $\tilde{m}_{\delta \phi}$ and $M_{\tilde{\nu}_i^c}$ respectively given by
 \[\tilde{m}_{\delta \phi} \simeq \frac{\lambda M_{BL}}{\sqrt{2(1 - 2r_\pm)}} \] (E.g. $9 \cdot 10^{10}$ GeV for $r_\pm = 0.03$) and $M_{\tilde{\nu}_i^c} = 2\lambda_{\tilde{\nu}_i^c} M_{BL}$.

 Where we restore m_p in the formulas. The mass $\tilde{m}_{\delta \phi}$ is only r_\pm dependent and increases with it.

- The inflaton can decay perturbatively into:
 - A pair of RHNs ($\tilde{\nu}_i^c$) with Majorana masses $M_{\tilde{\nu}_i^c}$ through the following decay width
 \[\tilde{\Gamma}_{\delta \phi \rightarrow \nu_i^c} = \frac{\lambda_{\tilde{\nu}_i^c}^2}{16\pi} \tilde{m}_{\delta \phi} \left(1 - \frac{4M_{\tilde{\nu}_i^c}^2}{\tilde{m}_{\delta \phi}^2} \right)^{3/2} \] with $\lambda_{\tilde{\nu}_i^c} = \frac{M_{\tilde{\nu}_i^c}}{2\langle J \rangle M} \left(1 - 3c_+ \frac{M^2}{m_p^2} \right)$ arising from $L_{\delta \phi \rightarrow \nu_i^c} = \lambda_{\tilde{\nu}_i^c} \tilde{\nu}_i^c \nu_i^c \nu_i^c$.
 - H_u and H_d through the following decay width
 \[\tilde{\Gamma}_{\delta \phi \rightarrow H_u H_d} = \frac{2}{8\pi} \lambda_H^2 \tilde{m}_{\delta \phi} \] with $\lambda_H = \frac{\lambda_H}{\sqrt{2}} \left(1 - 2c_+ \frac{M^2}{m_p^2} \right)$ arising from $L_{\delta \phi \rightarrow H_u H_d} = -\lambda_H \tilde{m}_{\delta \phi} \delta \phi H_u^* H_d^*$.
 - MSSM (s)-Particles XYZ through the following c_+-dependent 3-body decay width
 \[\tilde{\Gamma}_{\delta \phi \rightarrow XYZ} = \lambda_y \frac{14n_f}{512\pi^3} \tilde{m}_{\delta \phi} \] with $\lambda_y = 2y_3c_+ \frac{M_{BL}}{\langle J \rangle m_p}$ and $y_3 = h_{t,b,\tau}(\tilde{m}_{\delta \phi}) \approx 0.5$.

 This decay arises from $L_{\delta \phi \rightarrow XYZ} = -\lambda_y(\tilde{\phi}/m_p)(X\psi Y\psi Z + Y\psi X\psi Z + Z\psi X\psi Y) + \text{h.c.}$

- The reheating temperature, T_{rh}, is given by
 \[T_{rh} = \left(\frac{72}{5\pi^2} g_* \right)^{1/4} \tilde{\Gamma}_{\delta \phi}^{1/2} m_{\tilde{p}}^{1/2} \] with $\tilde{\Gamma}_{\delta \phi} = \tilde{\Gamma}_{\delta \phi \rightarrow \nu_i^c} + \tilde{\Gamma}_{\delta \phi \rightarrow H} + \tilde{\Gamma}_{\delta \phi \rightarrow XYZ}$, with $g_* \approx 228.75$.

C. Pallis
Gravitational Waves & Leptogenesis From Higgs Inflation in SUGRA

14/18
Leptogenesis and \tilde{G} Abundance

- **The Out-of-equilibrium Decay of ν_i^c can generate an L asymmetry which can be converted to the B yield:**

\[
Y_B = -0.35 \frac{5}{4} \frac{T_{\text{rh}}}{\overline{m}_{\phi}} \frac{\Gamma_{\phi \to \nu_i^c}}{\Gamma_{\phi}} \epsilon_i \quad \text{Here} \quad \overline{m}_\phi < 2M_{\tilde{\nu}^c} \quad \text{For some } i \text{ with } i = 1, 2, 3.
\]

Leptogenesis and \tilde{G} Abundance

- **The Out-Of-Equilibrium Decay of ν_i^c can generate an L asymmetry which can be converted to the B Yield:**

$$Y_B = -0.35 \frac{2}{4} \frac{T_{\text{th}}}{\tilde{m}_{\delta\phi}} \frac{\Gamma_{\delta\phi \rightarrow \nu_i^c}}{\Gamma_{\delta\phi}} \epsilon_i \quad \text{Here } \tilde{m}_{\delta\phi} < 2M_{\nu_i^c} \text{ for some } i \text{ with } i = 1, 2, 3.$$

- **The Thermally Produced \tilde{G} Yield At The Onset of BBN Is Estimated To Be:**

$$Y_{\tilde{G}} \approx 1.9 \cdot 10^{-22} T_{\text{th}} / \text{GeV}.$$

Leptogenesis and \tilde{G} Abundance

- **The Out-Of-Equilibrium Decay of ν_i^c can generate an L asymmetry which can be converted to the B Yield:**

 $$Y_B = -0.35 \, 2 \, \frac{5}{4} \, \frac{T_{\text{th}}}{m_{\delta\phi}} \, \frac{\Gamma_{\delta\phi \rightarrow \nu_i^c}}{\Gamma_{\delta\phi}} \, \epsilon_i \quad \text{Here } m_{\delta\phi} < 2M_{\nu^c} \text{ for some } i \text{ with } i = 1, 2, 3.$$

- **The Thermally Produced \tilde{G} Yield at the Onset of BBN is estimated to be:**
 $$Y_{\tilde{G}} \approx 1.9 \cdot 10^{-22} T_{\text{th}} / \text{GeV}.$$

Post-Inflationary Requirements

1. **UV Behavior.** As anticipated $\Lambda_{\text{UV}} = 1$ for $r_\pm \leq 1$ since the expansions about $\langle \phi \rangle$ are r_\pm (and not c_- or c_+) dependent:

 $$m^2 \phi^2 \approx \left(1 + (m - 1)r_\pm \phi^2 + 6r_\pm^2 \phi^2 + \left(1 - \frac{1}{2} m(m - 3)\right)r_\pm^2 \phi^2 + \cdots \right) \phi^2 \quad \text{and} \quad \tilde{V} \approx \frac{\lambda^2 \phi^4}{16c_-^2} \left(1 - 2r_\pm \phi^2 + 3r_\pm^2 \phi^4 - \cdots \right).$$

Inflaton Decay & Non-Thermal Leptogenesis

Leptogenesis and \tilde{G} Abundance

- The Out-Of-Equilibrium Decay of ν_i^c can generate an L Asymmetry Which Can Be Converted to the B Yield:

$$Y_B = -0.35 \ 2 \ \frac{5}{4} \ \frac{T_{th}}{m_{\delta}} \ \frac{\Gamma_{\delta \rightarrow \nu_i^c}}{\Gamma_{\delta}} \ \epsilon_i$$

Here $m_{\delta} < 2 M_{\tilde{\nu}_i}$ For Some i with $i = 1, 2, 3$.

- The Thermally Produced G Yield At The Onset of BBN Is Estimated To Be: $Y_G \approx 1.9 \cdot 10^{-22} T_{th} / \text{GeV}$.

Post-Inflationary Requirements

(i) UV Behavior. As Anticipated $\Lambda_{UV} = 1$ for $r_\pm \leq 1$ since the expansions about $\langle \phi \rangle$ are r_\pm (and not c_- or c_+) Dependent:

$$J^2 \phi^2 \approx \left(1 + (m - 1) r_\pm \phi^2 + 6 r^2 \phi^2 + \left(1 - \frac{1}{2} m (m - 3) \right) r^2 \phi^2 - \cdots \right) \phi^2$$

And

$$\tilde{V} \approx \frac{\lambda^2 \phi^4}{16 c_-^2} \left(1 - 2 r_\pm \phi^2 + 3 r^2 \phi^4 - \cdots \right).$$

(ii) Gauge Unification. Although $U(1)_{B-L}$ Gauge Symmetry Does Not Disturb This Gauge Coupling Unification Within MSSM We Determine M Demanding That The Unification Scale $M_{\text{GUT}} \approx 2/2.433 \times 10^{-2}$ is identified with M_{BL} at the Vacuum, i.e.

$$\sqrt{c_- (\langle f_R \rangle - 2 r_\pm) g M} / \sqrt{\langle f_R \rangle} = M_{\text{GUT}} \Rightarrow M \approx M_{\text{GUT}} / g \sqrt{c_- (1 - 2 r_\pm)} \sim 10^{15} \text{ GeV} \text{ with } g \approx 0.7 \text{ (GUT Gauge Coupling).}$$

Inflaton Decay & non-Thermal Leptogenesis

Leptogenesis and \tilde{G} Abundance

- **The Out-Of-Equilibrium Decay of ν^c_i can generate an L Asymmetry which can be converted to the B Yield:**

 $$Y_B = -0.35 \left(\frac{5}{4} \frac{T_{\text{th}}}{m_{\delta\phi}} \frac{\Gamma_{\delta\phi \to \nu^c_i}}{\Gamma_{\delta\phi}} \right) \varepsilon_i$$

 Here $m_{\delta\phi} < 2M_{\tilde{\nu}^c}$ for some i with $i = 1, 2, 3$.

- **The Thermally Produced \tilde{G} Yield at the Onset of BBN is estimated to be:** $Y_{\tilde{G}} \approx 1.9 \cdot 10^{-22} T_{\text{th}} / \text{GeV}$.

Post-Inflationary Requirements

(i) **UV Behavior.** As anticipated $\Lambda_{\text{UV}} = 1$ for $r_\pm \leq 1$ since the expansions around $\langle \phi \rangle$ are r_\pm (and not c_- or c_+) dependent:

$$J^2 \phi^2 \simeq \left(1 + (m - 1) r_\pm \tilde{\phi}^2 + 6 r_\pm^2 \tilde{\phi}^2 + \left(1 - \frac{1}{2} m(m - 3) \right) r_\pm^2 \tilde{\phi}^2 + \cdots \right) \phi^2$$

and

$$\tilde{V} \simeq \frac{\lambda^2 \phi^4}{16 c_-^2} \left(1 - 2 r_\pm \tilde{\phi}^2 + 3 r_\pm^2 \tilde{\phi}^4 - \cdots \right).$$

(ii) **Gauge Unification.** Although $U(1)_{B-L}$ gauge symmetry does not disturb this gauge coupling unification within MSSM we determine M demanding that the unification scale $M_{\text{GUT}} \approx 2/2.433 \times 10^{-2}$ is identified with M_{BL} at the vacuum, i.e.

$$\sqrt{c_-(f_+ - 2r_\pm) M / \sqrt{f_+}} = M_{\text{GUT}} \Rightarrow M \approx M_{\text{GUT}} / g \sqrt{c_- (1 - 2 r_\pm)} \sim 10^{15} \text{ GeV}$$

with $g \approx 0.7$ (GUT gauge coupling).

(iii) **Constraints on $M_{\tilde{\nu}^c}$.** To avoid any erasure of the produced Y_L and ensure that the ϕ decay to ε_i is kinematically allowed and $M_{\tilde{\nu}^c}$ are theoretically acceptable, we have to impose the constraints:

(a) $M_{\tilde{\nu}^c} \gtrsim 10 T_{\text{th}}$, (b) $m_{\delta\phi} \gtrsim 2M_{\tilde{\nu}^c}$ and (c) $M_{\tilde{\nu}^c} \lesssim 7.1 M \iff \lambda_{\nu^c} \lesssim 3.5$.

LEPTOGENESIS AND \tilde{G} ABUNDANCE

• The Out-Of-Equilibrium Decay of ν_i^c can generate an L asymmetry which can be converted to the B yield:

$$Y_B = -0.35 \frac{5}{2} \frac{T_{th}}{m_{\delta \phi}} \Gamma_{\delta \phi \rightarrow \nu_i^c} \epsilon_i \quad \text{Here } m_{\delta \phi} < 2M_{\nu_i^c} \quad \text{for some } i \text{ with } i = 1, 2, 3.$$

• The Thermally Produced \tilde{G} yield at the onset of BBN is estimated to be: $Y_{\tilde{G}} \approx 1.9 \cdot 10^{-22} T_{th}/\text{GeV}$.

Post-Inflationary Requirements

(i) UV Behavior. As anticipated $\Lambda_{\text{UV}} = 1$ for $r_\pm \leq 1$ since the expansions around $\langle \phi \rangle$ are r_\pm (and not c_- or c_+) dependent:

$$J^2 \phi^2 \approx \left(1 + (m - 1)r_\pm \phi^2 + 6r_\pm^2 \phi^2 + \left(1 - \frac{1}{2} m(m - 3) \right) r_\pm^2 \phi^2 - \cdots \right) \frac{\phi^2}{\phi'} \quad \text{and } \tilde{V} \approx \frac{\lambda_\phi^4}{16c_-} \left(1 - 2r_\pm \phi^2 + 3r_\pm^2 \phi^4 - \cdots \right).$$

(ii) Gauge Unification. Although $U(1)_{B-L}$ gauge symmetry does not disturb this gauge coupling unification within MSSM, we determine M demanding that the unification scale $M_{\text{GUT}} \approx 2/2.433 \times 10^{-2}$ is identified with M_{BL} at the vacuum, I.E. $\sqrt{c_- (\langle f_R \rangle - 2r_\pm) g M_{\text{GUT}} / \langle f_R \rangle} = M_{\text{GUT}} \Rightarrow M \approx M_{\text{GUT}} / g \sqrt{c_- (1 - 2r_\pm)} \sim 10^{15} \text{ GeV}$ with $g \approx 0.7$ (GUT gauge coupling).

(iii) Constraints on $M_{\nu_i^c}$. To avoid any erasure of the produced Y_L and ensure that the ϕ decay to ϵ_i is kinematically allowed and $M_{\nu_i^c}$ are theoretically acceptable, we have to impose the constraints:

(a) $M_{\nu_i^c} \geq 10T_{th}$, (b) $m_{\delta \phi} \geq 2M_{\nu_i^c}$ and (c) $M_{\nu_i^c} \leq 7.1M \iff \lambda_{\nu_i^c} \leq 3.5$.

(iv) The achievement of baryogenesis via non-thermal leptogenesis dictates at 95% c.l. $Y_B = \left(8.64_{-0.16}^{+0.15} \right) \cdot 10^{-11}$.

LEPTOGENESIS AND \tilde{G} ABUNDANCE

- The Out-Of-Equilibrium Decay of ν_i^c can generate an L asymmetry which can be converted to the B yield:

$$Y_B = -0.35 \frac{2}{4} \frac{T_{\text{th}}}{m_{\delta\phi}} \frac{\Gamma_{\delta\phi \rightarrow \nu_i^c}}{\Gamma_{\delta\phi}} \epsilon_i \quad \text{Here} \quad m_{\delta\phi} < 2M_{\tilde{\nu}e} \quad \text{for some} \quad i \quad \text{with} \quad i = 1, 2, 3.$$

- The Thermally Produced \tilde{G} Yield at the onset of BBN is estimated to be: $Y_{\tilde{G}} \approx 1.9 \cdot 10^{-22} T_{\text{th}} / \text{GeV}$.

POST-INFLATIONARY REQUIREMENTS

(i) UV Behavior. As anticipated $\Delta_{\text{UV}} = 1$ for $r_\pm \leq 1$ since the expansions around $\langle \phi \rangle$ are r_\pm (and not c_- or c_+) dependent:

$$J^2 \phi^2 \approx \left(1 + (m-1)r_\pm \phi^2 + 6r_\pm^2 \phi^2 + \left(1 - \frac{1}{2}m(m-3) \right) r_\pm^2 \phi^2 + \cdots \right) \phi^2 \quad \text{and} \quad \tilde{V} \approx \frac{\lambda^2 \phi^4}{16c_\pm^2} \left(1 - 2r_\pm \phi^2 + 3r_\pm^2 \phi^4 + \cdots \right).$$

(ii) Gauge Unification. Although $U(1)_{B-L}$ gauge symmetry does not disturb this gauge coupling unification within MSSM, we determine M demanding that the unification scale $M_{\text{GUT}} \approx 2/2.433 \times 10^{-2}$ is identified with M_{BL} at the vacuum, i.e.

$$\sqrt{c_- (\langle f_R \rangle - 2r_\pm) gM / \langle f_R \rangle} = M_{\text{GUT}} \Rightarrow M \approx M_{\text{GUT}} / g \sqrt{c_- (1 - 2r_\pm)} \approx 10^{15} \text{GeV} \quad \text{with} \quad g \approx 0.7 \quad \text{(GUT Gauge Coupling)}.$$

(iii) Constraints on $M_{\tilde{\nu}e}$. To avoid any erasure of the produced Y_L and ensure that the ϕ decay to ϵ_i is kinematically allowed and $M_{\tilde{\nu}e}$ are theoretically acceptable, we have to impose the constraints:

- (a) $M_{\tilde{\nu}e} \gtrsim 10T_{\text{th}}$,
- (b) $m_{\delta\phi} \gtrsim 2M_{\tilde{\nu}e}$, and
- (c) $M_{\tilde{\nu}e} \lesssim 7.1M \Leftrightarrow \lambda_{\tilde{\nu}e} \lesssim 3.5$.

(iv) The Achievement of Baryogenesis via non-thermal leptogenesis dictates at 95% c.l. $Y_B = \left(8.64^{+0.15}_{-0.16}\right) \cdot 10^{-11}$.

(v) \tilde{G} Constraints. Assuming unstable \tilde{G}, we impose an upper bound on $Y_{\tilde{G}}$ in order to avoid problems with the SBB nucleosynthesis:

$$Y_{\tilde{G}} \lesssim \begin{cases} 10^{-14} & \Rightarrow T_{\text{th}} \lesssim \begin{cases} 5.3 \cdot 10^7 \text{GeV} \\
5.3 \cdot 10^8 \text{GeV} \end{cases}, \text{for} \quad \tilde{G} \text{ mass } m_{\tilde{G}} \approx \begin{cases} 0.69 \text{ TeV} \\
10.6 \text{ TeV}. \end{cases} \end{cases}$$

Lepton-Number Asymmetry and Light Neutrino Data

- m_{iD} are the Dirac masses in a basis (called ν_i^c-basis) where ν_i^c are mass eigenstates. In the weak (primed) basis

\[
U^\dagger m_D U^\dagger = d_D = \text{diag}(m_{1D}, m_{2D}, m_{3D}) \quad \text{where} \quad L' = LU \quad \text{and} \quad \nu^{c'} = U^c \nu^c \quad (: 1).
\]
Lepton-Number Asymmetry and Light Neutrino Data

- m_{iD} are the Dirac masses in a basis (called ν^c_i-basis) where ν^c_i are mass eigenstates. In the Weak (primed) basis
 \[U^\dagger m_D U^c = d_D = \text{diag}(m_{1D}, m_{2D}, m_{3D}) \] where $L' = LU$ and $\nu^{c'} = U^c \nu^c$ (: 1).

- Working in the ν^c_i-basis, the Type I seesaw formula reads
 \[m_\nu = -m_D d_{\nu c}^{-1} m_D^T, \] where $d_{\nu c} = \text{diag}(M_{1\nu}, M_{2\nu}, M_{3\nu})$ with $M_{1\nu} \leq M_{2\nu} \leq M_{3\nu}$ real and positive.

- Replacing m_D from Eq. (1) in the above equation and we extract the mass matrix of light neutrinos in the weak basis
 \[m_\nu = U^\dagger m_\nu U^* = -d_D U^c d_{\nu c}^{-1} U^c U^\dagger d_D, \]

Which can be diagonalized by the is the unitary PMNS matrix U_ν parameterized as follows:

\[U_\nu = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \cdot \begin{pmatrix} e^{-i\varphi_1/2} & e^{-i\varphi_2/2} & 1 \end{pmatrix}, \]

with $c_{ij} := \cos \theta_{ij}$, $s_{ij} := \sin \theta_{ij}$, δ the CP-violating Dirac phase and φ_1 and φ_2 the two CP-violating Majorana phases.
LEPTON-NUMBER ASYMMETRY AND LIGHT NEUTRINO DATA

- \(m_{iD} \) are the Dirac masses in a basis (called \(\nu_i^c \)-basis) where \(\nu_i^c \) are mass eigenstates. In the weak (primed) basis
 \[
 U^\dagger m_D U^{c\dagger} = d_D = \text{diag}(m_{1D}, m_{2D}, m_{3D}) \quad \text{where} \quad L' = LU \quad \text{and} \quad \nu^{c'} = U^c \nu^c \quad (\because 1).
 \]
- Working in the \(\nu_i^c \)-basis, the type I seesaw formula reads
 \[
 m_\nu = -m_D d^{-1}_{\nu c} m_D^T, \quad \text{where} \quad d_{\nu c} = \text{diag}(M_{1\nu}, M_{2\nu}, M_{3\nu}) \quad \text{with} \quad M_{1\nu} \leq M_{2\nu} \leq M_{3\nu} \quad \text{real and positive.}
 \]
- Replacing \(m_D \) from Eq. (I) in the above equation and we extract the mass matrix of light neutrinos in the weak basis
 \[
 m_\nu = U^\dagger m_\nu U^* = -d_D U^c d^{-1}_{\nu c} U^{c\dagger} d_D,
 \]

Which can be diagonalized by the is the unitary PMNS matrix \(U_\nu \) parameterized as follows:

\[
U_\nu = \begin{pmatrix}
 c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
 -c_{23} s_{12} - s_{23} c_{12} s_{13} e^{i \delta} & c_{23} c_{12} - s_{23} s_{12} s_{13} e^{i \delta} & s_{23} c_{13} \\
 s_{23} s_{12} - c_{23} c_{12} s_{13} e^{i \delta} & -s_{23} c_{12} - c_{23} s_{12} s_{13} e^{i \delta} & c_{23} c_{13}
\end{pmatrix} \cdot \begin{pmatrix}
 e^{-i \varphi_1 / 2} & & \\
 & e^{-i \varphi_2 / 2} & \\
 & & 1
\end{pmatrix},
\]

with \(c_{ij} := \cos \theta_{ij} \), \(s_{ij} := \sin \theta_{ij} \), \(\delta \) the CP-violating Dirac phase and \(\varphi_1 \) and \(\varphi_2 \) the two CP-violating Majorana phases.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Best Fit ±1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta m_{21}^2/10^{-3} \text{eV}^2)</td>
<td>(7.6^{+0.19}_{-0.18})</td>
</tr>
<tr>
<td>(\Delta m_{31}^2/10^{-3} \text{eV}^2)</td>
<td>(2.38^{+0.05}_{-0.07})</td>
</tr>
<tr>
<td>(\sin^2 \theta_{12} / 0.1)</td>
<td>3.23 ± 0.16</td>
</tr>
<tr>
<td>(\sin^2 \theta_{13} / 0.01)</td>
<td>2.26 ± 0.12</td>
</tr>
<tr>
<td>(\sin^2 \theta_{23} / 0.1)</td>
<td>(5.67^{+0.32}_{-1.24})</td>
</tr>
<tr>
<td>(\delta / \pi)</td>
<td>1.41^{+0.55}_{-0.4}</td>
</tr>
</tbody>
</table>

- The masses, \(m_\nu \), of \(\nu_i \) are calculated as follows:
 \[
 m_{2\nu} = \sqrt{m_{1\nu}^2 + \Delta m_{21}^2} \quad \text{and}
 \]
 \[
 \begin{cases}
 m_{3\nu} = \sqrt{m_{1\nu}^2 + \Delta m_{31}^2}, & \text{for no } m_\nu \text{'s} \\
 \nu_{1\nu} = \sqrt{m_{3\nu}^2 + |\Delta m_{31}|}, & \text{for IO } m_\nu \text{'s}
 \end{cases}
 \]

- \(\sum_i m_{i\nu} = 0.23 \text{ eV at 95\% c.l. from Planck Data.} \)
RESULTS

- To verify the compatibility of the post-inflationary constraints, we focus on the following central values of the inflationary model:

 \[(r_\pm, c_-) = (0.03, 146) \rightarrow (n_s, r) = (0.969, 0.03) \& (\lambda, \overline{m}_{\delta\phi}) \simeq (6.6 \cdot 10^{-4}, 10^{11} \text{ GeV})\].

- All the requirements can be met along the lines presented in the \(\lambda_\mu - m_{1D}\) plane.

Table:

<table>
<thead>
<tr>
<th>Cases</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchy</td>
<td>NO</td>
<td>NO</td>
<td>IO</td>
</tr>
<tr>
<td>(m_r / \text{eV})</td>
<td>0.01</td>
<td>0.05</td>
<td>0.007</td>
</tr>
<tr>
<td>(\Sigma m_r / \text{eV})</td>
<td>0.074</td>
<td>0.17</td>
<td>0.106</td>
</tr>
<tr>
<td>(m_{2D} / \text{GeV})</td>
<td>3</td>
<td>5.5</td>
<td>0.8</td>
</tr>
<tr>
<td>(m_{3D} / \text{GeV})</td>
<td>100</td>
<td>135</td>
<td>10</td>
</tr>
<tr>
<td>(\varphi_1)</td>
<td>-(\pi)</td>
<td>(\pi)</td>
<td>-(\pi)</td>
</tr>
<tr>
<td>(\varphi_2)</td>
<td>0</td>
<td>(\pi / 3)</td>
<td>0</td>
</tr>
<tr>
<td>(M_{1r} / 10^{10} \text{ GeV})</td>
<td>0.9 - 1.7</td>
<td>1 - 1.95</td>
<td>2.6</td>
</tr>
<tr>
<td>(M_{2r} / 10^{11} \text{ GeV})</td>
<td>2.4</td>
<td>5.5</td>
<td>5</td>
</tr>
<tr>
<td>(M_{3r} / 10^{13} \text{ GeV})</td>
<td>20</td>
<td>17</td>
<td>0.64</td>
</tr>
</tbody>
</table>

- We take \(m_{rv} = m_{1\nu}\) for NO \(\nu_i\)'s and \(m_{rv} = m_{3\nu}\) for IO \(\nu_i\)'s.

- In all cases, the inflaton decays exclusively into the lightest of RHNS since \(2M_{i2} > \overline{m}_{\delta\phi}\) for \(i = 2\) and 3.

- \(Y_B\) is equal to its central value and the \(\overline{G}\) constraint is under control for \(m_{3/2} \geq 75\) TeV since we obtain

 \[0.9 \leq Y_G / 10^{-14} \leq 5 \quad \text{and} \quad 0.5 \leq T_{rh} / 10^8 \text{GeV} \leq 2.6\].

C. Pallis

Gravitational Waves & Leptogenesis From Higgs Inflation in SUGRA
Conclusions

- **We proposed a variant of non-MHI which can safely accommodate r’s of order 0.01 with subplanckian inflaton values and without causing any problem with the validity of the effective theory.**
Conclusions

• We proposed a variant of non-MHI which can safely accommodate r’s of order 0.01 with subplanckian inflaton values and without causing any problem with the validity of the effective theory.

• This scenario can be elegantly implemented within a $B - L$ SUSY GUT, adopting a superpotential determined by a R-symmetry and several semi-logarithmic Kähler potentials which respect a softly broken shift-symmetry.
Conclusions

We proposed a variant of non-MHI which can safely accommodate \(r \)’s of order 0.01 with subplanckian inflaton values and without causing any problem with the validity of the effective theory.

This scenario can be elegantly implemented within a \(B-L \) SUSY GUT, adopting a superpotential determined by a \(R \)-symmetry and several semi-logarithmic Kähler potentials which respect a softly broken shift-symmetry.

Combined restrictions from baryogenesis via nTL, \(\tilde{G} \) constraints and neutrino data can be met when \(m_{3/2} \geq 75 \text{ TeV} \), \(\lambda \lesssim 7 \cdot 10^{-3} \), and the inflaton decays to \(\nu_1^c \), with \(M_\tilde{\nu^c} \) in the range \((10^{10} - 10^{14}) \text{ GeV} \).

Thank You!